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ELEC9344: Speech and Audio Processing

Time-Frequency Analysis

Chapter 8
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Time-Frequency Analysis

Spectral analysis is an important technique that is 
utilised widely in many different applications, from 
control systems to speech processing. 

Traditionally the Short Time Fourier Transform 
(STFT) has been used to extract the relevant 
frequency information from the signal requiring 
analysis in the particular application.
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Conventional STFT-based spectral analysis techniques build a 
time-frequency representation of a signal by taking the Fourier 
Transform (FT) of a windowed section of the signal. 

The window is then moved along the signal in time producing a 
succession of estimates of the spectral components of the signal. 
This works well for signals composed of stationary components 
(e.g. sine waves) and for slowly varying signals. 

However, if a signal contains rapidly changing transient events,
such as those found in speech, a problem can arise in the use of
the STFT.

Short-Time Fourier Transform (STFT)
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To achieve effective temporal localisation of such high frequency 
events, a short analysis window is required. 

It is a property of the STFT that the frequency resolution is 
inversely proportional to the window length. This implies that 
improved time resolution can  be achieved only at the expense of
poorer frequency resolution. 

Thus, choosing a window function short enough to localise the 
high frequency transients will reduce the STFT's ability to 
distinguish between two adjacent frequency components. 

Conversely, choosing a longer window function will give better 
frequency resolution, but poorer time resolution.

However, many applications, for example speech processing, 
require both good frequency resolution and good time resolution,
hence a trade-off must be achieved between time and frequency 
resolution when using the STFT.

STFT
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STFT
If the window function is defined as w(t) and the signal as s(t), the 
STFT can be expressed as:

dtebtwtxbSTFT tj∫
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where ‘b’ is the time shift of the window.

The above equation provides a time-frequency representation 
of the windowed signal s(t).w(t-b). The function w(t-b) is a 
shifted version of a standard window function with the window 
now centred at ‘b’ seconds.

For example, a Morlet window is given by the following 
expression:
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STFT

The major problem intrinsic to the use of window function      
for the STFT namely the fixed time-frequenncy resolution at 
all points in the time-frequency plane.

It is the property of the STFT that the frequency resolution 
is inversely proportional to the window length, which implies 
that improved time resolution can be achieved only at the 
expense of poorer frequency resolution

Thus, choosing a window function short enough to localise 
the high frequency transients will reduce the STFT's ability 
to distinguish between two adjacent frequency components. 
Conversely, choosing a longer window function will give 
better frequency resolution, but poorer temporal information 
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Discrete -Time equivalent of STFT (using the Morlet 
Window)
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where N is the window length fixed for STFT and k =0, 1, 
2,…N. The shift parameter ‘b’ is the discrete time at which 
the analysis window is centred. s(m) is the sampled signal.Pr
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Frequency Resolution of the STFT

•It is obvious that for each value θ, STFT(θ,n) is the 
convolution of the sequence s(m).e-jθm with the 
sequence ω(m). 

•Therefore for a particular digital frequency θ0, the 
STFT(θ0,n) can be viewed as the convolution of the 
window impulse response with a frequency shifted 
version of the signal. 
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STFT as Modulation and Filtering
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Lowpass filter
Modulator

p(m)s(m)

S(θ) P(θ)

Input signal Impulse 
response 

w(m)

q(m)

STFT(θo ,b)

*q(m) = p(m) w(m)e-jθ
o
m

w(m) plays the role of the impulse response of a linear shift 
invariant system. The frequency shifting is caused by the 
multiplication of the exponential sinusoid .
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•By using a bank of these structures and by varying θo in the 
range -π to π one can evaluate STFT(θ,b) at various digital 
frequencies.

•The entire discrete STFT could thus be realised by a bank of 
modulators and lowpass filters. 

•The bandwidth of each of the lowpass filters is identical 
because they all have the same impulse response. 

•The frequency resolution of the STFT will therefore be the 
same at all frequencies and equal to the lowpass filter 
bandwidth. 

•The STFT will not discriminate between different frequencies 
which lie within this passband of the lowpass filter.
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STFT realised by a bank of modulators and lowpass filters

e-j θN m

X
STFT( θN,b)

Lowpass filter
w(m)

e-j θ1 m

X
STFT( θ1 ,b)

Lowpass filter
w(m)

e-j θ2 m

X
STFT( θ2 ,b)

Lowpass filter
w(m)s(m)

Input signal

Modulator

Modulator

Modulator
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Time-Frequency Resolution of the STFT
In time-frequency analysis of a non-stationary signal, it 
is desirable to maximise both the time resolution (∆t)
and the frequency resolution(∆f). This implies 
minimising the product of ∆t. ∆f.

The frequency Resolution is associated with the 
window function bandwidth and that two sinusoids will 
be discriminated only if they are more than ∆f Hz apart.

The time resolution is associated with the window 
function length and that two pulses in time will be 
discriminated only if they are more than ∆t sec apart.Pr
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Time-Frequency Resolution of the STFT

Because both ∆t and ∆f are controlled by the same 
window length, it is not possible to decrease one 
without increasing the other. In fact, the time-
bandwidth product ∆t.∆f is lower bounded ( Rioul and
Vetterli, 1991).

Time Bandwidth Product = ∆t∆f ≥ (1/4π)

Once a window has been chosen for the STFT, then 
both the time resolution and the frequency resolution 
are fixed. Thus, the window can be chosen to give good 
frequency resolution or good time resolution, but not 
both. Pr
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Time-Frequency Resolution of the STFT…..

It is the property of the STFT that frequency 
resolution is inversely proportional to window 
length   ∆f α (1/window length)
Choosing a window function short enough to 
localise transient events will reduce the STFT’s 
ability to resolve closely spaced low-frequency 
components
Conversely, choosing a longer window function 
will give better frequency resolution, but poorer 
time resolutionPr
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However, many applications, including speech 
processing require both good frequency resolution and 
good time resolution, hence a trade off must be 
achieved between time and frequency resolution when 
using the STFT

Note that the STFT performs a constant Bandwidth 
analysis which implies a variable Q analysis (same 
bandwidth for both high and low frequencies)

35100 Hz3500 Hz

10100 Hz1000 Hz

2100Hz200 Hz

Q factorConstant BWAnalysis Freq.

STFT
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60 samples 60 samples

60 samples

Time

∆f

∆f

∆t

∆t ∆f

The tiling of the 
time-frequency 
plane for the 
STFT where the 
time frequency 
resolution is 
fixed for all 
analysis 
frequencies by 
the choice of 
the window 
function
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Time resolution Analysis of a Gaussian Window/Filter

The impulse response of the
Gaussian filter is given by:

2t-eh(t) α=

If we define the time resolution as τr and the two impulses 
are separated by at least τr when passed through the
Gaussian filter, the output of the filter will still lead to 
separate peaks in the response (see figure (a)). 

Gaussian  
   filter

y(t)

Two peaks

^ 
rτ τ>

τ

^ 
x(t)

(a)

τ/2 / 2τ
t=0Pr

of
es

so
r E

. A
mbik

air
aja

h 

UNSW
, A

us
tra

lia



Time resolution Analysis of a Gaussian Window/Filter……

Gaussian  
   filter

y(t)
^ 

rτ τ

τ

^ 
x(t)

Single peak
< (b)

However, if the pulses are not separated by τr then the 
output of the filter shows only one peak (see figure (b)).

Pr
of

es
so

r E
. A

mbik
air

aja
h 

UNSW
, A

us
tra

lia



In order to have two impulses separated by t secs, the 
response y(t)  must be:
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Frequency Resolution of the Gaussian Filter
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Time-Bandwidth Product for a Gaussian filter
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The following graph shows ∆f
versus ∆t of the above equation.

Similarly, the Time-Bandwidth 
product for other window 
functions can be calculated and 
plotted. 

From the graph it can be proved 
that the distance AB is minimum 
for the Gaussian window function 
as compared to any other window 
functions.

9.42

0.471

201

A

B

Hyperbola

∆f

∆t

Rectangular (∆t.∆f)=0.88

Triangular =0.64

Hamming =0.65
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Introduction to Wavelet Transform (WT)

Wavelet Transform is a relatively new 
technique for signal analysis, and have 
recently found applications in many areas 
including Speech and Audio processing, 
Image processing, and Biomedical signal 
analysis. 
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Basis Functions

In spectral analysis of a signal, a set of basis
functions is used to identify frequency components
that are present in the signal, for example, in the
STFT, the basis functions are sinusoids of various
frequencies. 

The Wavelet Transform (WT) has been
proposed as a potentially superior alternative to the      
STFT. In the WT, wavelets are used as the basis      
functions. 
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A wavelet is an oscillatory waveform of finite duration
that has an average value of zero, in contrast to
sinusoids, which have infinite duration.

Also, where sinusoids are smooth and regular, wavelets
tend to be asymmetric and irregular. 

Wavelets

For example, the above Figure (a) shows a sinusoidal 
waveform, while Figure (b) displays a typical wavelet.

...

Sinusoid Wavelet

(a) (b)
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Conventional STFT-based spectral analysis 
techniques build a time-frequency 
representation of a signal by taking the 
Fourier Transform of a windowed section 
of the signal. 

The window is then moved along the 
signal in time producing a succession of 
estimates of the spectral components of the 
signal. 

Short-Time Fourier Transform (STFT)
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This works well for signals composed of 
stationary components and for slowly 
varying signals. 

However, if a signal contains both slowly-
varying components and rapidly changing 
transient events, such as speech signals, a 
problem can arise in the use of the STFT. 

Short-Time Fourier Transform ……….
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To achieve effective temporal localisation of 
transient events, a short analysis window is 
required. 

It is a property of the STFT that frequency 
resolution is inversely proportional to 
window length, which implies that improved 
time resolution can be achieved only at the 
expense of poorer frequency resolution. 

Short-Time Fourier Transform ……….
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Thus, choosing a window function short enough to 
localise the high frequency transients will reduce 
the STFT's ability to resolve closely-spaced low-
frequency components. 

Conversely, choosing a longer window function
will give better frequency resolution, but poorer 
time resolution. 

However, many applications, for example speech 
processing, require both good frequency resolution
and good time resolution, hence a trade-off must be 
achieved between time and frequency resolution 
when using the STFT. 

Short-Time Fourier Transform ……….
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Wavelet Transform

In contrast to the STFT, which uses a single 
analysis window, the Wavelet Transform (WT) 
uses shorter windows at higher frequencies and 
longer windows at lower frequencies. 

This provides good frequency resolution but 
poorer time resolution at lower frequencies and 
good time resolution but poor frequency resolution 
at higher frequencies.Pr
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Wavelet Transform ……

The loss in time resolution at lower frequencies 
does not present major difficulties in many 
applications e.g. speech processing, as lower 
frequency components in speech are relatively 
constant. 

The loss in frequency resolution at higher 
frequencies is also of minor consequence in 
speech processing, as high frequency components 
are composed primarily of transient events whose 
separation and identification require good time 
resolution. Pr
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Wavelet Transform……

The basis functions used in the WT are derived 
from a single primary (‘mother’) wavelet by time 
compression and dilation, whereas the basis 
functions used in the STFT are derived by varying 
the frequency of a sinusoid. 

A further difference between the STFT and the 
WT is that the basis functions in the STFT are of 
infinite duration, whereas the wavelets used in the 
WT are of finite duration (and hence finite 
energy); this is referred to as ‘compact support’. Pr
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t0e
2te

t0ew(t)
ωαω jj −− −=

The basis 
function used to 
analyse high 
frequency 
components in 
the case of the 
STFT (window 
size = 60 
samples, cycles in 
window = 28)

The basis function 
used to analyse 
medium 
frequency 
components in 
the case of the 
STFT (window 
size = 60 
samples, cycles in 
window = 14)

The basis function 
used to analysis 
low frequency 
components in 
the case of the 
STFT (window 
size = 60 
samples, cycles in 
window = 7)

Basis Function for STFT:
60 samples
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A high frequency 
primary wavelet. 
(Short window = 
20 samples, 
cycles in window 
= 7)
Note: A Gaussian
window is used 
here.

The primary 
wavelet above, 
stretched in time 
to produce a 
medium 
frequency 
wavelet. (medium 
window = 40 
samples, cycles in 
window = 7)

The primary 
wavelet above 
further stretched 
in time to produce 
a low frequency 
wavelet. (long 
window = 60 
samples, cycles in 
window =7)

Basis Function for WT:

a=1.0 a=1.4a=0.6
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WT performs Constant Q analysis 

The fact that the wavelets used all have the same 
number of cycles means that the WT provides a 
constant-Q frequency analysis.

The primary wavelet can be thought of as a 
bandpass filter, and the constant-Q property of the 
other bandpass filters (daughter wavelets) follows 
because they are all simply compressed or dilated 
versions of the primary wavelet.Pr
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STFT Performs Constant Bandwidth Analysis

In STFT, the width of the window is 
constant for all frequencies and, as a result, 
the basis function uses many cycles (high-
Q) to analyse  high frequency components 
as opposed to a smaller number of cycles 
(low-Q) for analysing low frequency 
components. 
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The tiling of the 
time-frequency 
plane for the 
STFT where the 
time frequency 
resolution is 
fixed for all 
analysis 
frequencies by 
the choice of 
the window 
function.

60 samples 60 samples

60 samples

Time

∆f

∆f

∆t

∆t ∆f

F
R
E
Q
U
E
N
C
Y

The shaded sections illustrate how the time 
and frequency resolution are both constant 
for the STFT.
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Figure shows the 
tiling of the time-
frequency plane for 
the WT, where high 
frequencies are 
analysed with good 
time resolution and 
low frequencies are 
analysed with good 
frequency resolution. 

Time

20 samples

F
r
e
q
u
e
n
c
y

WT

40 samples

100 samples

∆t1

∆f1

∆f2
∆f3
∆t2

∆t3

The time and frequency resolution are traded 
off against each other in the WT.

Note that in both cases (STFT 
and WT), the product of time 
resolution and frequency 
resolution is constant.
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Further insight into the bandpass filter-like nature
of the wavelet transform can be obtained by
considering the Morlet wavelet, which is given by
the following equation:

where ω0 is the frequency of the mother
wavelet. The wavelet g(t/a) is derived by
expansion if a > 1, or by compression if a < 1.
The above equation can now be modified to
explicitly include this dependence on the factor
‘a’ (usually referred to as the ‘scale factor’).

Morlet Wavelet
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Morlet wavelet
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The time function and corresponding frequency 
response for the wavelet described by the above 
equation is plotted for various values of ‘a’. 

Note: The bandwidth is different in each case. 
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a = 1

Primary wavelet

t1

t

ω0 = 5

f

Frequency response

a = 0.4ω0 = 5

t

t1

Compressed wavelet

a = 1.6ω0 = 5

t1

t

Expanded wavelet

f

Frequency response

f

Frequency response
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One important point to remember is that the wavelet 
transform does not have a single set of basis functions 
(i.e. a single mother wavelet) like the Fourier 
transform, which utilises just sine and cosine 
functions. 
Instead, the wavelet transform can choose from an 
infinite set of possible mother wavelets. 
A number of mathematical conditions must be 
satisfied for a function to be admissible as a wavelet 
basis function. 
These conditions essentially require the wavelet 
function to be absolutely integrable and square
integrable, to be composed of only positive frequency 
components and to have zero DC component.

Mathematical Conditions for wavelet basis function
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There are different types of wavelet families whose characteristics vary 
according to several criteria. All wavelets decay quickly to zero, i.e. 
they have finite energy and compact support (zero valued outside a 
certain time interval). Examples of one-dimensional wavelets are given 
below:

Morlet/Gaussian
Daubechies (db8)

Mexican hat
Symlet (sym8)Pr
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Discrete STFT vs Discrete WT
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The discrete-time STFT is evaluated according to the 
following equation:

where s(m) is the signal being analysed, T is the sampling period, N is 
the window width, which is fixed for the STFT, and k=0,1,….N-1. The 
parameter b specifies the number of samples by which the analysis 
window is shifted along the signal under analysis, while w(m-b) is the 
window function, shifted by b samples.Pr
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Discrete WT
The discrete WT (assuming a Morlet wavelet) is 
calculated as follows:
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where a is the positive valued scale parameter, and ωo 
is the frequency of the prototype wavelet. The constant  
1/sqrt(a) is used for energy renormalisation. N(a) is a 
positive constant associated with the wavelet length such 
that wavelet is non-zero in the range -N(a) to +N(a).
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It is clear that expanding a 
prototype wavelet with 
frequency f0 will result in a 
longer wavelet with a lower
associated frequency. In fact, 
the associated wavelet 
frequency is inversely 
proportional to the scale 
parameter ‘a’ as indicated by 
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f 00 ;
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In order to analyse the 
signal, the scale 
parameter a (see above 
equation) is often given 
an initial large value 
(corresponding to the 
lowest-frequency 
prototype wavelet) and 
is then decreased in 
regular increments to 
analyse the signal in 
more detail at higher 
frequencies. 

Since spectral properties are 
frequently displayed on a 
logarithmic frequency scale, 
it is customary to use:

With this definition, integral 
increments in j result in 
octave increments in a (j = 
0, 1, 2, 3, 4...). This is called 
the dyadic scale  (a is 
modified by powers of two).
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Figure below shows that the frequency analysis performed by the 
STFT results in a spectrum with increments equally spaced along 
the frequency axis, and with equal bandwidth, while the DWT 
performs frequency analysis with variable bandwidth (constant-Q) 
and logarithmically spaced increments along the frequency axis.

dB

ff0 2f0 3f0 4f0 5f0 6f0

(a )

S TFT

dB

f8f0

(b)

DWT

4f02f0f0

dyadic scale
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Example
Figure shows (next slide) the frequency analysis carried 
out on a speech signal using STFT and DWT. 

The speech signal is the word ‘eight’ sampled at 8 kHz. 

The top window shows the time-frequency analysis 
carried out using the DWT  while the middle window 
shows the STFT spectrogram obtained.

Note that both analyses show good frequency localisation 
in the low frequency formant region.

However, at high frequencies the time localisation is 
much better for the DWT than for the STFT. 

The window size used for the analysis of the STFT was 
300 samples. In this example, a Morlet window was used, 
and the frequency of the mother wavelet was 3.9 Hz.Pr
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WT

STFT

utterance

‘eight’
Time-Frequency Analysis

Comparison of DWT (top window) and STFT (middle window) analysis of 
the utterance ‘eight’ (bottom window).
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Alternative Implementation of the Discrete Wavelet Transform

The DWT given by the following Equation 

is not the most practical way of evaluating the wavelet 
transform, as strictly speaking, an infinite number of 
wavelet functions is required to represent a signal.
However, it is possible to obtain an equivalent 
formulation to the DWT which uses a finite number of 
basis functions. 
This form of the DWT uses a pair of wavelet functions 
for calculation. 
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In this formulation, a signal s(n) can be 
decomposed in terms of translates and dilates of 
a primary wavelet w(n):

where n= 0, 1, 2, ....; j (scale factor) = 1, 2, 3, ....; 
k (translation factor) = 0, 1, 2, 3, ...; g(n) is a so-
called scaling function, and the primary wavelet 
w(n) is normally obtained from the scaling 
function. 
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The primary wavelet is normally a bandpass filter with a 
centre frequency of ω0 and hence

Similarly, g(n) is a normalised lowpass filter and hence

The coefficients c(k) (see previous slide) represent the 
approximation of the original signal s(n), while the 
coefficients d(j,k) represent the details of the original 
signal s(n) at different scale factors.  
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Figure (below) gives an example of the Daubechies
scaling function g(n) and the corresponding wavelet 
function w(n). The frequency response of each function 
is also shown.

Daubechies Scaling function (db8) Daubechies  wavelet  function (db8)

dB

f

Lowpass 
filter

dB

f

Highpass 
filter

g(n) w(n)
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Two methods developed independently in the late seventies and 
early eighties which lead naturally to fast implementation 
methods for the discrete wavelet transform are subband coding 
and multiresolution signal analysis. 
An important development was that of Quadrature Mirror Filters 
(QMF) which allows a signal to be split using non-ideal filters 
into two down-sampled subband signals, and subsequently 
reconstructed without aliasing distortion 
The down sampling of the signal components during 
decomposition introduces aliasing distortion. 
However, it turns out that by carefully choosing filters for the
decomposition and reconstruction, it is possible to “cancel out”
the effects of aliasing. 

Wavelets and Filter Banks
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H0

H1

2

2

2

2

F0

F1

s(n)

Decomposition Reconstruction

x0(n)

x1(n)

v0(n)

v1(n)

y0(n)

y1(n)

y(n)

Channel

For perfect reconstruction, the decomposition and reconstruction
filters are related by the following equations:
H1 (z) = H0 (-z)  {demonstrates the mirror image property 

of the filters}
F0 (z) = H1 (-z) { satisfies alias cancellation condition}

F1 (z) = -H0 (-z) { satisfies alias cancellation condition} 

Two-Channel Quadrature-Mirror Filter Bank

Pr
of

es
so

r E
. A

mbik
air

aja
h 

UNSW
, A

us
tra

lia



Mirror Image Filters

Let h0(n) be some FIR lowpass filter with real 
coefficients. The mirror filter is defined as

h1(n)=(-1)n h0(n)
Therefore H1(z) = H0(-z)

|)(0|     |)(1|   )(0)(1

)(0))((0)(0)(0

   )(1)(1

πθθπθθ

πθπθθ
θ

θθ

−=⇒−=

−=−=−=
=

−

=
=

HHHH

HjeHjeHjez
zH

jez
zHH

This demostrates the mirror image property of H0 and 
H1 about θ = π/2. Hence justifying the name 
quadrature mirror filters (QMF)Pr
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QMF FiltersAmp.

Frequency (Hz)
0 2000 40000

0.5

1

1.5
Lowpass Highpass

H0(z)H1(z)

•Perfect reconstruction filterbanks then followed, with orthogonal 
and biorthogonal solutions.

• The orthogonal filters provide an orthogonal transform, i.e. the 
same signal s(n) is projected onto new perpendicular axis. The 
orthogonal transform can be used to separate out the noise and
decorrelate the signal. 

•The biorthogonal transform provides new axis which are not 
necessarily perpendicular, but no information is lost.
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Example

Consider a two-channel QMF bank with 
the analysis filter given by H0(z) = 1+z-1

The second analysis filter is therefore
H1(z) = H0(-z) = 1-z-1

and the corresponding synthesis filters for 
an alias-free realisation

F0(z) = H0(z) = 1+z-1   (= H1(-z))
F1(z) = -H0(-z) =-[1-z-1] =1+ z-1
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H0

H1

2

2

2

2

F0

F1

s(n)

Decomposition Reconstruction

x0(n)

x1(n)

v0(n)

v1(n)

y0(n)

y1(n)

y(n)

Channel

If the down-sampling and the up sampling factors are equal to the 
number of bands of the filter bank, then the output y(n) can be made to 
retain some or all of the characteristics of the input x(n) by properly 
choosing the filters in the structure.

In this case, the filter bank is said to be critically sampled filter bank
In speech applications,  the speech signal s(n) is first split into a number 
of subband signals by means of analysis filterbank. The subband signals 
are then processed and finally combined by a synthesis filterbank 
resulting in an output signl y(n).Pr
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61

Analysis of the two-channel QMF Bank
H0

H1

2

2

2

2

F0

F1

s(n)

Decomposition Reconstruction

x0(n)

x1(n)

v0(n)

v1(n)

y0(n)

y1(n)

s(n)

p0(n)

p1(n)

^

In subband coding applications, v0(n) and v1(n) are quantised, encoded 
and transmitted to the receiver.

We assume ideal operation here, with no coding and transmission 
errors, so we focus on the analysis and synthesis filtersPr
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The Fast Wavelet Transform

The concept of multiresolution analysis of a signal was 
introduced  in the 1980s in the form of a pyramidal 
decomposition, which decomposes a signal into a coarse 
approximation and additional detail components.This idea is 
central to wavelet analysis.

Mallat (1989) established the link between filter banks and 
wavelets and proposed an algorithm for implementing wavelet 
expansions as a set of filter banks. 

Daubechies (1988) first reconstructed wavelets using filter 
coefficients, and indeed most useful wavelets are derived 
iteratively from particular filters rather than the other way 
around.
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The Fast Wavelet Transform

Mallat’s algorithm for performing wavelet decomposition and 
reconstruction using a tree structured filter bank is illustrated in 
the next slide.

. This algorithm is usually referred to as the Fast Wavelet 
Transform (FWT). 

The original signal s(n) is filtered by a lowpass and highpass
filter pair followed by decimation by 2 to form the 
approximation (referred to as cA1) and detail (cD1) signals at 
Level 1. 

The decomposition process can be iterated to further levels as 
illustratedbefore, with successive approximation components 
being further decomposed so that one signal is broken down into 
many lower resolution components. Pr
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3 Level Decomposition

3 Level Reconstruction

Example
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Theoretically this could continue indefinitely but in practice the 
procedure is limited by the number of samples in the original signal 
s(n). 

Where this length is a power of 2, for example 2j, then j levels of 
decomposition are possible, resulting in an approximation cAj and a 
detail cDj of length 1 sample. 

The approximations are the low frequency components of the 
signal, the details are the high frequency components (see previous 
slide). The reconstruction process consists of interpolation and
filtering as shown in the diagram

. For the example shown, which consists of 3 levels of 
decomposition, the original signal may  be reconstructed from signals 
cA3, cD3, cD2 and cD1. These signals are called wavelet 
coefficients.Pr
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In practice, using the Fast Wavelet Transform for signal 
processing applications involves three aspects: 

breaking up the signal to obtain the wavelet 
coefficients (FWT), 

modifying the wavelet coefficients to carry out 
whatever processing is required (e.g. noise reduction), 
and 

reassembling the signal from the modified wavelet 
coefficients (‘Inverse FWT’).

Note: It is possible to develop a multiband 
analysis/synthesis filterbank by iterating a two-channel 
QMF bank.Pr

of
es

so
r E

. A
mbik

air
aja

h 

UNSW
, A

us
tra

lia



Example of a Multi-Level Decomposition

The diagram in the next slide shows a 3-level decomposition 
using Daubechies wavelet filters (db8) and implemented using 
Matlab. 

In this example, the input signal consists of  a frame of 200  
speech samples. 

After the first level of decomposition (filtering and down 
sampling) the detail coefficients cD1 consist mainly of high 
frequency components, and the length of cD1 is actually more than 
half the length of the original signal, i.e. cD1 is 107 samples long 
as opposed to 100. 

This is a consequence of the filtering process, which is 
implemented by convolving the signal with a filter impulse 
response. The convolution smears the signal, introducing several
extra samples into the output vector. Similarly cD2 = 61 as opposed 
to 50 and  cD3 is 38 as opposed to 25.
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0 100 200
-2

0

2
x 10 4

0 100 200
-5000

0

5000
cD1

Signal = 200 samples 

Fs = 8000 Hz

0 50 100
-1

0

1
x 10 4

cA1

cD2

cA2

0 20 40
-2

0

2
x 10 4

0 20 40
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0

2
x 10 4 cD3cA3

Level 1

Level 2

Level 3

cD1cD2

cD3
cA3

f (kHz)

4210.5

3-Level Decomposition. The speech signal s(n) = 200 samples long. The 
wavelet coefficients cD1 = 107 samples; cD2 = 61; cD3 =38 and cA3 = 38 
samples long.
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Regular Binary Subband tree
The two-channel filterbank divides the input spectrum 
into two equal subbands, yielding the low (L) and the 
high (H) subbands. 
This two-band QMF split can again be applied to the L 
and H half-bands to generate the quarter bands. 
When this procedure is repeated K times, 2K equal 
bandwidth subbands are obtained. 
This approach provided the maximum possible 
frequency resolution of π/2K within K levels. 
This spectral analysis structure is called a K-level 
regular binary tree. 
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Regular Binary Subband tree….
For K = 3 the regular binary tree structure that employs 
QMF and the corresponding frequency band split are 
shown in Figure (a) and (b) (next slide)
Figure (c) shows the frequency diagram for the 8-band 
regular binary subband decomposition. 
We assume that the filter outputs are computed for each 
input block of 8 samples, which will result in one new
subband sample generated for each maximally 
decimated subband and for each input block.
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Dyadic Subband Tree
L

L

H

H

H

L

LLL LLH

LH

H

Frequency
0 ππ/2

(b)

0

π

π/2

(a)

8 16
Time (x sampling period)

Magnitude

π/4

Frequency

(c)

∆f1

∆f2

∆f3

∆t1

∆t2

∆t3

In many applications all of the subbands of the regular tree may not be required 
and as a result some of the fine frequency resolution subbands can be combined 
to yield larger bandwidth frequency bands. This implies the irregular termination 
of the tree branches.  

One of the irregular tree structures is called dyadic,  or octave band tree.

It splits only the lower half of the spectrum into two equal bands at any level of 
the tree. Therefore, the higher half-band component of the signal at any level of 
the tree is not decomposed any further. 
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Wavelet Packet Decomposition

The dyadic tree structured decomposition shown 
before can be generalised in several ways. 
First, instead of splitting a signal into two bands at 
a time, we can split into several bands. 
Second, signals which in the dyadic tree 
decomposition are not split any further can 
themselves be further decomposed into subbands. 
In this way we can obtain a very general tree 
structure, and by modifying the synthesis
filterbank correspondingly, we can retain the 
perfect reconstruction property. This is called the 
wavelet packet expansion. . Pr
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Wavelet Packet Decomposition

An example of a 24-band WP representation 
is shown in the next slide where the sampling 
rate is 16 kHz. 
This filterbank structure is identified because 
it has sufficient resolution for direct 
implementation of the psychoacoustic model.
Also the subband bandwidths and centre 
frequencies closely approximate the critical 
bands
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The subband numbering of the diagram (see previous slide) does 
not take into account the switching of the highpass and lowpass
spectra as the output of each highpass branch in the decomposition 
tree is decimated.  

Appropriate numbers for reordering the spectra can be illustrated, 
for example, using a 3 level Wavelet Packet decomposition tree as 
shown in Table 1.

Spectral Reordering
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Band 
No: ->

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L H

Level 1 1 2 3 4 5 6 7 8 1
6

15 14 13 12 11 10 9

L H L H

Level 2 1 2 3 4 8 7 6 5 1
6

15 14 13 9 10 11 12

L H L H L H L H

Level 3 1 2 4 3 8 7 5 6 1
6

15 13 14 9 10 12 11

Table 1:  Appropriate numbers for reordering the sub-band spectra
L - Lowpass sub-band; H - Highpass subbandPr
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Appendix A
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Decimation by 2 2
x(n) y(n)=x(2n)

π−π 0−2π 2π
θ

|X(θ)|
1

0−2π 2π
θ

|X(θ/2)|1/2

|X({θ/2}−π)|

The spectrum is stretched by 
down sampling
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Aliasing term

Stretch X(θ) by a factor 2 to obtain X(θ/2)

Case 1
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Decimation by 2

2
x(n) y(n)=x(n/2)

π−π 0−2π 2π
θ

|X(θ)|
1

0−2π 2π
θ

|X(θ/2)|1/2
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Interpolation by 2 2
x(n) y(m)

)]2([        
)]2([)(

)]2([)(

θ

θθ
X

jeXY
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=
=

=

π−π 0−2π 2π θ

|X(θ)|
1

π−π 0−2π 2π θ

|Y(θ)|
1

π/2

The upsampled spectrum has 
compressed images of X(θ)

The spectrum is compresseed 
by upsamplingPr
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