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Chapter 3

Linear Predictive Coding (LPC)
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Linear Predictive Coding of Speech
One of the most powerful speech analysis 
techniques is the method of linear predictive 
analysis.
This method has become  the predominant 
technique for estimating the basic speech 
parameters, e.g. pitch, formants, spectra, 
vocal tract area functions, and for 
representing speech for low bit rate 
transmission or storage
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LPC …..
The basic idea behind linear predictive 
analysis is that a speech sample can be 
approximated as a linear combination of 
past speech samples.
By minimising the sum of the squared 
differences (over a finite interval) between 
the actual speech samples and the linearly 
predicted ones, a unique set of predictor 
coefficients can be determined.
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A basic discrete-
time model for 
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LPC….
The speech samples s(n) are related to the 
excitation u(n) by the simple difference equation:

Between pitch pulses Gu(n) is zero.Therefore 
using the above equation,  s(n) can be predicted 
from a linearly weighted summation of past 
samples. However, if Gu(n) is included then we 
can predict s(n) only approximately
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Basis for Linear Prediction
Between pitch pulses u(n) = 0

The nth speech sample can be viewed as a 
linear combination of p past samples
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LPC……
LPC is often referred to as “inverse 
filtering”, as its aim is to determine the “all 
zero” filter which is the INVERSE of the 
vocal tract model
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All Zero Filter
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The input to the model will be the previous speech 
samples, s(n-k) and output is estimated current sample
The difference between the ACTUAL speech sample & 
the ESTIMATED speech sample is the error signal, e(n)Pr
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Linear Prediction Model
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Suppose that we process the speech signals 
with a linear predictor and the predictor 
coefficients are αk and the predictor output 
is:

The error between the actual signal s(n) and the predicted 
value          is given by
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The prediction error signal e(n) is shown above.
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Ideally, we need a technique to produce the 
coefficients of the model (αk) such that they are equal 
to the coefficients of the speech production model (ak)Pr
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LPC…..
If we determine the correct coefficients, 
then the error signal  e(n) = Gu(n) and the 
linear predictor is called an “inverse filter”. 
The transfer functiion of the inverse filter is 
given by

∑
=

−−==
p

k

k
k z

zS
zEzA

1
1

)(
)()( α

Pr
of

es
so

r E
. A

mbik
air

aja
h 

UNSW
, A

us
tra

lia



14

A by-product of the LPC analysis is the 
generation of the error signal e(n) and it is a 
good approximation to the excitation source.
It is expected that the prediction error e(n) will 
be large (for voiced speech) at the beginning of 
each pitch period. 
Thus the pitch period can be determined by 
detecting the positions of the samples of e(n) 
which are large, and defining the period as the 
difference between pairs of samples of e(n) 
which exceed a reasonable threshold.
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Alternatively the pitch period can be determined by 
performing an autocorrelation analysis on e(n) and 
detecting the largest peak in the appropriate range. 
Another way of interpreting why the error signal is 
valuable for pitch detection is the observation that the 
spectrum of the error signal is approximately flat; thus 
the effects of the formants have been eliminated in the 
error signal.
In conclusion we can say that except for a sample at 
the beginning of each pitch period, every sample of the 
voiced speech waveform can be predicted from the 
past p samples.
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LPC….
For voiced speech, e(n) would consist of a 
train of impulses
e(n) would be small most of the time except 
at the beginning of the pitch period
The prediction is not valid at instants of 
time where the input pulses occur
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LPC….
The prediction error e(n) = Gu(n) would be
– Scaled pulse train for voiced speech frames
– Scaled random noise for unvoiced speech 

frames
Because of the time-varying nature of the 
speech, the predictor coefficients should be 
estimated from short segments of speech 
signal (10-20 ms)
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Estimation of Predictor Coefficients
The basic approach is to find a set of 
predictor coefficients αk that will minimise the 
mean squared error , e(n)2 , over a short segment 
of speech waveform.
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Estimation of Predictor Coefficients
We are attempting to MINIMISE this error 
and hence we must determine the condition 
such that the derivative of E with respect to
αk is zero
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Minimisation of Error
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Autocorrelation Method for LPC 
Analysis

This yields a set of p simultaneous 
equations
Closer examination of the “coefficients” of 
these simultaneous equations show that they 
are actually the autocorrelation function for 
difference delay values
We have already introduced the 
autocorrelation function
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Autocorrelation Method for LPC 
Analysis

Consider the “coefficient” of ak in the set of 
simultaneous equations, namely
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It is assumed that the waveform segment s(n) is identically zero outside 
the interval 0≤l≤N-1  (i.e multiply the signal s(n) by a window function)Pr

of
es

so
r E

. A
mbik

air
aja

h 

UNSW
, A

us
tra

lia



25

Autocorrelation Method for LPC 
Analysis

Similarly, the “constant” terms of the 
simultaneous equation

Thus the set of simultaneous equations can 
be re-written using these autocorrelation 
terms
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Autocorrelation Method for LPC 
Analysis
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Matrix Form of Simultaneous 
Equations
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Solving the Simultaneous Equations
It is necessary to invert the “autocorrelation 
matrix” (R) in order to determine the LPC 
coefficients

This can be quite cumbersome, given that it 
is a pxp matrix, with p typically between 10 
and 14 in most applications

α = −R r1
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Solving the Simultaneous Equations
However, since R is what is known as a
Toeplitz Matrix
– Symmetric
– All elements along the main diagonal are equal

there are a number of ITERATIVE methods 
which can be used to solve the system (e.g. 
Durbin’s algorithm) 
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Durbin’s Algorithm
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Consider an example of obtaining the predictor coefficients for a 
predictor of order 2. The original matrix equation is of the form:

Using the Durbin method, we get the following steps:
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Durbin’s Algorithm

The recursion allows the prediction of the ith order 
filter coefficients from the (i-1)th order filter 
coefficients in such a way as to minimise the short-
time average prediction error E. 

i.order predictor  afor t coefficien reflection  theis  where
 i oforder predictor  afor t  coefficienpredictor  j  theis th(i)

k

ik
α

E(i) is the prediction error for a predictor of order i. 
Thus at each stage of the computation the prediction 
error for a predictor of order i can be monitoredPr

of
es

so
r E

. A
mbik

air
aja

h 

UNSW
, A

us
tra

lia



33

Durbin’s Algorithm

If the autocorrelation coefficients R(i) are replaced 
by a set of normalised autocorrelation coefficients 
R(i)/R(0), then the solution to the matrix equation 
remains unchanged. 

However, the error E(i) is now interpreted as a 
normalised error.  If we now call this normalised 
error V(i) , then
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Block Diagram of the LPC processor

•Briefly explain why pre-emphasis is required in  the  
above diagram

•Briefly explain why Hamming window is required in the 
above scheme
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RMS prediction Error with the number of 
prediction coefficients p (Rabiner et al, 1993)

The normalised 
prediction error for 
unvoiced speech, for 
a given value of p, is 
significantly higher 
than for voiced 
speech. 

The interpretation of 
this results is that 
unvoiced speech is 
less linearly 
predictable than 
voiced speech
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Examples of LPC analysis:
•A vowel spoken by a male 
speaker.

•Frame size = 20 ms, (200 
samples at 10 kHz sampling 
rate)

•LPC analysis,   p = 14

•Windowed speech  (a)

•Prediction Error signal (b)

• Signal log spectrum (FFT-
based) fitted by an LPC log 
spectrum(c )

•Log spectrum of the 
prediction error signal (d)Pr
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Spectra of vowel sound for several values of  p

-Input speech segment

-Fourier Transform of 
that segment

-Liner predictive spectra 
of p from 4 to 20.

-It is clear that as p 
increases, more of the 
detailed properties of 
the signal spectrum are 
preserved in the LPC 
spectrum. When p 
become  large, LPC 
spectrum often rises to 
fit individual pitch 
harmonics of the speech 
signal.Pr
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Reflection Coefficients
Particularly in speech coding applications, it 
is common to “encode” the LPC model 
using “reflection coefficients (ri)” rather 
than using the LPC coefficients (αi)
Reflection coefficients arise from the 
acoustic analysis of the vocal tract as a 
series of inter-connection cylindrical tubes 
with various cross sections
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Reflection Coefficients
The reflection coefficient between a tube 
with cross sectional area Ai and a tube with 
cross sectional area Ai+1 is given by

ri gives measure of how much energy is 
reflected back at each junction
Note if two sections have the same area 
there is no relection
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PARCOR Coefficients
However, it can be shown that they are 
related to the ki values used in Durbin’s 
algorithm (which are known as PARCOR 
coefficients) ri=-ki

It can also be show that i
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Steepest Descent Algorithm (for 
LPC calculation)

A block diagram of a linear predictor is 
shown below

The predictor coefficients are 
adjusted continually during 
adaptation to reduce the squared 
prediction error e(n)2 toward it’s 
minimum value
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Steepest Descent Algorithm
The updating of the predictor coefficients is carried out using 
the steepest descent algorithm. The predictor coefficients are 
updated on a sample by sample basis as follows:
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Exercises on LPC
1. Calculate LPC parameters of Speech

Use LPC function and perfrom pre-emphasis
2. Determination of Formants using LPC
3. Formant Tracking Using LPC
4. Inverse Filtering to determine e(n)
5. Determination of Pitch Period from e(n)
6. Pitch Period Tracking
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Exercise: Speech Synthesis
1. Generate a excitation train of impulses for 

a pitch of 100Hz. (fs = 10000)
2. Use given coefficients for vocal V(z)
3. Apply this input to a model of the vocal 

tract including glottis model and lip 
radiation model and listen to output.

Excitation
Model
E(z)

Vocal Tract
Model
V(z)

Lip Radiation
Model
R(z)

Speech
Signal
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model LPCorder  th  10
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Exercise: Speech Synthesis
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