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Chapter 3

Linear Predictive Coding (LPC)






Linear Predictive Coding of Speech

One of the most powerful speech analysis
techniques is the method of linear predictive
analysis.

This method has become the predominant
technique for estimating the basic speech
parameters, e.g. pitch, formants, spectra,
vocal tract area functions, and for
representing speech for low bit rate
transmission or storage



LPC ....

The basic i1dea behind linear predictive
analysis 1s that a speech sample can be
approximated as a linear combination of
past speech samples.

By minimising the sum of the squared
differences (over a finite interval) between
the actual speech samples and the linearly
predicted ones, a unique set of predictor
coefficients can be determined.



A basic discrete-
time model for
speech production
was developed
previously
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LPC....

The speech samples s(n) are related to the
excitation u(n) by the simple difference equation:

s|n]= Zp: a, s[n—k|+Gu[n]

Between pitch pulses Gu(n) i1s zero.Therefore
using the above equation, s(n) can be predicted
from a linearly weighted summation of past
samples. However, 1f Gu(n) 1s included then we
can predict s(n) only approximately



Basis for Linear Prediction

Between pitch pulses u(n) =0

s(n) = Zp: a,s(n—k)+Gu(n)

~s(n)=as(n-D+a,s(n-2)+..+a_s(n—p)

The n™ speech sample can be viewed as a
linear combination of p past samples



LPC 1s often referred to as ‘inverse
filtering”, as its aim 1s to determine the “all
zero” filter which 1s the INVERSE of the

vocal tract model
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All Zero Filter
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The mput to the model will be the previous speech
samples, s(n-k) and output is estimated current sample

The difference between the ACTUAL speech sample &
the ESTIMATED speech sample 1s the error signal, ¢(n)



[Linear Prediction Model

Suppose that we process the speech signals
with a linear predictor and the predictor
coefficients are o, and the predictor output

) s(n) = Zp: a,s(n—k)

The error between the actual signal s(n) and the predicted
value §(7) is given by

e(n)=s(n)—s(n)=s(n)— Zp: a,s(n—k)
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Speech signal

e
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The prediction error signal e(n) 1s shown above.

5(z) = G <- Vocal tract( IIR filter)
U(z) £ =
1~ Za K
k=1
E(z) 4
E@@) =1- Z a z*k <- Linear Predictor(FIR filter)
5(2) S

11



Speech signal
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»1deally, we need a technique to produce the
coefficients of the model (o, ) such that they are equal
to the coetficients of the speech production model (a,)
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LPC.....

If we determine the correct coefficients,
then the error signal e(n) = Gu(n) and the
linear predictor 1s called an “inverse filter”.
The transfer functiion of the inverse filter 1s
given by

—k
a,z
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A by-product of the LPC analysis 1s the
generation of the error signal e(n) and 1t 1s a
good approximation to the excitation source.

It 1s expected that the prediction error e(n) will
be large (for voiced speech) at the beginning of
each pitch period.

Thus the pitch period can be determined by
detecting the positions of the samples of e(n)
which are large, and defining the period as the
difference between pairs of samples of e(n)
which exceed a reasonable threshold.
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Alternatively the pitch period can be determined by
performing an autocorrelation analysis on e(n) and
detecting the largest peak in the appropriate range.

Another way of interpreting why the error signal 1is
valuable for pitch detection 1s the observation that the
spectrum of the error signal 1s approximately flat; thus
the effects of the formants have been eliminated in the
error signal.

In conclusion we can say that except for a sample at
the beginning of each pitch period, every sample of the
voiced speech waveform can be predicted from the
past p samples.
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LPC....

For voiced speech, e(n) would consist of a
train of impulses

e(n) would be small most of the time except
at the beginning of the pitch period

The prediction 1s not valid at instants of
time where the imnput pulses occur

gt et

Error signal

Speech signal s(n) € (n) =Gu(n)



SIGNAL PREDICTION ERROR
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Residual error e(n) waveforms for several vowels (Rabiner et el. , 1993) 18



LPC....

The prediction error e(n) = Gu(n) would be
— Scaled pulse train for voiced speech frames

— Scaled random noise for unvoiced speech
frames

Because of the time-varying nature of the
speech, the predictor coefficients should be

estimated from short segments of speech
signal (10-20 ms)
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Estimation of Predictor Coefficients

The basic approach i1s to find a set of
predictor coefficients a, that will minimise the

mean squared error , €(n)? , over a short segment
of speech waveform.

E= Z_:e(n)2 = Z(S(Vl) —5(n))’
= i S(n)—zp:akS(" — k)

20



Estimation of Predictor Coefficients

We are attempting to MINIMISE this error
and hence we must determine the condition

such that the derivative of E with respect to
Q. 1S ZEro

8—]"Z:O,’forizl,2,3,

..... p (typically10 to14)
oa,
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Minimisation of Error

E v s(n)—ﬁaksm—k) [~ s(n-)]=0

P

Zs(n)s(n ) ZZakS(n k)s(n—i)=0

n=l k=l

N

Zs(n)s(n—i)—ZakZS(n—k)s(n—i)=O fori=1,2,3.....p
Zp:akZN:S(n —k)s(n—i) = ﬁ:s(n)s(n —1) for1=1,23....p
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Autocorrelation Method for LPC
Analysis

This yields a set of p simultaneous

equations

Closer examination of the “coefficients” of
these simultaneous equations show that they
are actually the autocorrelation function for
difference delay values

We have already introduced the
autocorrelation function

p(k) = R(k) = Zsm)s(n + k)
R(k) = R(—k) :



Autocorrelation Method for LPC
Analysis

Consider the “coefficient” of a, in the set of
simultaneous equations, namely

N

Y s(n—k)s(n—i)

n=1
If n-kis replaced by 1thenthis  becomes
N

Y s()s(l+k—i)=R(k—1i)

[=1
The Immits of the summation remain the same  as

the frame of speech 1s assumed to be windowed
(le. s(I) =01f I<lor I > N)

It 1s assumed that the waveform segment s(n) 1s 1dentically zero outside
the interval O<ISN-1 (i.e multiply the signal s(n) by a window funétion)



Autocorrelation Method for LPC
Analysis

Similarly, the “constant” terms of the
simultaneous equation

is(n)s(n —1) = R(7)

Thus the set of simultaneous equations can
be re-written using these autocorrelation

terms



Autocorrelation Method for LPC
Analysis

V4
> a R(k—i)=R(i) fori=123....p
k=1

o, R(0)+a,R()+a,R(2)+....... a,R(p—1)=R(l)
o, R(1)+a,R(0)+a,R(1) +....... a,R(p—2)=R(2)
o, R2)+a,R(D+a,R(0)+....... a,R(p—3)=R(3)
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Matrix Form of Simultaneous
Equations

R(0) R(1)
R(1) R(0)
R(1)

R(p—2)
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. R(p-2) R(p-1)

R(p-2)
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- R
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Solving the Simultaneous Equations

It 1s necessary to invert the “autocorrelation
matrix” (R) in order to determine the LPC
coefficients

a=R"r

This can be quite cumbersome, given that it
1S a pxp matrix, with p typically between 10
and 14 1n most applications
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Solving the Simultaneous Equations

However, since R 1s what 1s known as a
Toeplitz Matrix

— Symmetric
— All elements along the main diagonal are equal
there are a number of ITERATIVE methods

which can be used to solve the system (e.g.
Durbin’s algorithm)
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Durbin’s Algorithm

a!” is the k" LPC coefficient value after thei” iteration

E" is the residual error after the ith iteration
Steps
1. Initially set E” = R(0)

i-1 )
R(i)— D o "R(i- j)
=1 ]
E(i—l)
(i) _ @) _ =1 (i-1)
3S8eta;” =k, anda;” =a; 7 ko0 for [< j<i
4. Calculate E” = (1 k’ )E(’ g
5.Repeat 2,3 and 4 until i = p (the order of the LPC model)

2.Calculate k, = =
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Consider an example of obtaining the predictor coefficients for a
predictor of order 2. The original matrix equation is of the form:

‘RO) R | e | [RQO]
R(1) RO)| oy | |RQ)

Using the Durbin method, we get the following steps:

£©) _ o) RQ2)R(0) - R(1)
ky = :
R (0)~R*(1)
—> (2) _ RORO)- RE(l)
a%l) = R(1)/ R(0) 2 R2(0) - 20 . - a%
) BOIRM @) RORO - RORD)
R(0) R2(0)- R*(1)

1 = ai2
k; = R(1)/ R(0) -
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Durbin’s Algorithm

The recursion allows the prediction of the it order
filter coefficients from the (i-1)™ order filter
coefficients 1n such a way as to minimise the short-
time average prediction error E.

o is the j" predictor coefficient for a predictor order of i

Where k. 1s the reflection coefficient for a predictor order 1.

E® is the prediction error for a predictor of order i.
Thus at each stage of the computation the prediction
error for a predictor of order 1 can be monitored



Durbin’s Algorithm

If the autocorrelation coefficients R(1) are replaced
by a set of normalised autocorrelation coefficients
R(1)/R(0), then the solution to the matrix equation
remains unchanged.

However, the error EW is now interpreted as a
normalised error. If we now call this normalised
error VO | then
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s(n)

Block Diagram of the LPC processor

{11,..{1

Pre-emph asig—> Frame —pp{ Hamming p-| Autocarre atior ) LPC 5

blocking windowing anal ysis analysis

*Briefly explain why pre-emphasis 1s required in the
above diagram

*Briefly explain why Hamming window 1s required 1n the
above scheme
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1.0
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0.6

RMS PREDICTION ERROR

0.2

RMS prediction Error with the number of
prediction coefficients p (Rabiner et al, 1993)

The normalised
prediction error for
unvoiced speech, for
a given value of p, 1s
significantly higher
than for voiced
speech.

The interpretation of
this results 1s that
unvoiced speech is
less linearly
predictable than
voiced speech
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Examples of LPC analy31s
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*A vowel spoken by a male
speaker.

*Frame size = 20 ms, (200
samples at 10 kHz sampling
rate)

*LPC analysis, p=14

*Windowed speech (a)
*Prediction Error signal (b)

» Signal log spectrum (FFT-
based) fitted by an LPC log
spectrum(c )

*Log spectrum of the
prediction error signal (d)
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Spectra of vowel sound for several values of p

harmonics of the speech
signal. 37
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Reflection Coefticients

Particularly 1n speech coding applications, 1t
1s common to “encode” the LPC model
using “reflection coefficients (r,)” rather
than using the LPC coefficients (a.)

Reflection coefficients arise from the
acoustic analysis of the vocal tract as a
series of inter-connection cylindrical tubes
with various cross sections
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Reflection Coefticients

The reflection coefficient between a tube
with cross sectional area A, and a tube with
cross sectional area A, 1s given by
Ai+1 B Ai
]/;, —
A+ A4

i+1

r, gives measure of how much energy is
reflected back at each junction

Note if two sections have the same area
there 1s no relection
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PARCOR Coetficients

However, 1t can be shown that they are
related to the k. values used in Durbin’s

algorithm (which are known as PARCOR

coefficients) r=-k.
-k
It can also be show that 4., = L+ kf }Ai

white noise J\MI"\,
e 5 Sy Y

| [ L toosles be Ppocch
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Steepest Descent Algorithm (for
LPC calculation)

A block diagram of a linear predictor is

shown below

s(n)

4

e(n)2
e(n )2 -

s(n)

Pth orgfer
predigtor

ay ,az,%/,a4,. e Ol

The predictor coefficients are
adjusted continually during
adaptation to reduce the squared
prediction error e(n)? toward it’s
minimum value

e(n)’ = |:S(I’l) — i a,s(n— k)}

“+1



Steepest Descent Algorithm

The updating of the predictor coefficients 1s carried out using
the steepest descent algorithm. The predictor coefficients are
updated on a sample by sample basis as follows:

le(n)’]
oo

(xk(n+1):ak(n)—c k

¢ = learning rate, 0<c<l

2
dle(n)”] . ZG(H)M =-2en)snh-k)

8ak

ak(nﬂ):Crk(n)+ce(n)s(n—k) € k<p
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Exercises on LPC

Calculate LPC parameters of Speech
» Use LPC function and perfrom pre-emphasis

Determination of Formants using LPC
Formant Tracking Using LPC

Inverse Filtering to determine e(n)
Determination of Pitch Period from e(n)
Pitch Period Tracking
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Exercise: Speech Synthesis

Generate a excitation train of impulses for
a pitch of 100Hz. (fs = 10000)

Use given coetficients for vocal V(z)

Apply this mput to a model of the vocal
tract including glottis model and lip
radiation model and listen to output.

Excitation
Model
E(z)

Vocal Tract
Model
V(z)

Lip Radiation

Model
R(z)




Exercise: Speech Synthesis
R(z)=1-z""

-1
Z

G(z)= (o) wherea = (.98
]
B(z)
B(z)=1-0.0460z" —0.6232z7* +0.3814z°
+0.2443Z " +0.197327° +0.2873z° +0.3655z"

—0.4806z°—-0.1153z" +0.7100z7"
10th order LPC model

V(z) =
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