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Time-Domain Methods for Speech Processing

Discrete-Time Model For Speech ProductionPr
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Over a short time interval, the above linear system has the transfer 
function:

For voiced sounds: all 
pole model)

where p+1 = no of poles and e(n) is the excitation function.

This simplified all pole model is a natural representation of 
voiced sounds, but for nasal and fricative sounds the detailed 
theory calls for both poles and zeros in the vocal tract transfer 
function.
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We would prefer an all-pole model. The zeros can be transformed 
to poles as explained previously with L zeros transforming to 2L
poles. An all-pole model is given by
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However, if the order 
q is high enough, the 
all-pole model 
provides a good 
representation for 
almost all the sounds 
of speech; typically 
q=12Pr
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The major advantage of the all-pole model is that the gain 
parameter G and the filter coefficients (ak, k = 1,2,3,..) can be 
easily estimated in a very straightforward and computationally 
efficient manner, also with  good accuracy.

Any given utterance will last a certain amount of time. It is split 
into frames for processing as given: 

Each frame will typically contain 100 samples (assuming sampling
frequency of 8kHz). Each frame is thus 12.5 ms in durationPr
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Basic Parameter Extraction
There are a number of very basic speech 
parameters which can be easily calculated 
for use, in simple applications:
– Short Time Energy
– Short Time Zero Cross Count (ZCC)
– Pitch Period

All of the above parameters are typically 
estimated for frames of speech between 10 
and 20 ms long
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Short Time Energy
The short-time energy of speech may be 
computed by dividing the speech signal into 
frames of N samples and computing the 
total squared values of the signal samples in 
each frame.
Splitting the signal into frames can be 
achieved by multiplying the signal by a 
suitable window function w(n) {n=0, 1, 2, 
3, …, N-1}, which is zero for n outside the 
range (0, N-1)
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Rectangular Window
A simple rectangular window of duration of 
12.5 ms is suitable for this purpose. For a 
window starting at sample m, the short-time 
energy Em is defined as 
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Linear filter representation
The above equation (see previous slide) can 
thus be interpreted as 

The signal s(n)2 is filtered by a linear filter with 
impulse response h(n) . 

The choice of the impulse response ,h(n) or 
equivalently the window, determines the nature of 
the short-time energy representation.Pr

of
es

so
r E

. A
mbik

air
aja

h 

UNSW
, A

us
tra

lia



10

To see how the choice of window affects the short-time 
energy, let us observe that if h(n) was very long and of 
constant amplitude Em would change very little with time

Such a window would be equivalent of a very narrowband 
lowpass filter. Clearly what is desired is some lowpass 
filtering, so that the short-time energy reflects the 
amplitude variations of the speech signal.

We wish to have a short duration window to be responsive 
to rapid amplitude changes. But a window that is too short 
will not provide sufficient averaging to produce a smooth 
energy function.Pr
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If N is too small, Em will 
fluctuate very rapidly 
depending on exact 
details of the waveform. 

In N is too lager, Em will 
change very slowly and 
thus will not adequately 
reflect the changing 
properties of the speech 
signal
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Choice of Window Size
Unfortunately this implies that no single 
value of N is entirely satisfactory.

A suitable practical choice for N is on the 
order of 100-200 samples for a 10 kHz 
sampling rate (10-20 ms duration)
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Note that a recursive lowpass filter H(z) can also be used to 
calculate the short-time energy:
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It can be easily verified that the frequency response H(θ) has 
the desired lowpass property. Such a filter can be 
implemented by a simple difference equation:

2)]([)1()( nsnEanE +−=

E(n) is the energy at the time instant n
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The structure for calculating the short-time energy recursively

The quantity E(n) must be computed at each sample of input 
speech signal, even though a much lower sampling rate 
suffice.

The value ‘a’ can be calculated using )/2( sc ffea π−=

Fc is the cut-off frequency and fs is the sampling frequency (e.g 
fc=30 Hz, fs = 8000Hz)Pr
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Short Time Zero Crossing Count
The Short Time ZCC is calculated for a block of N 
samples of speech as

The ZCC essentially counts how many times the 
signal crosses the time axis during the frame
– It “reflects” the frequency content of the frame of 

speech
• High ZCC implies high frequency

It is essential that any constant DC offset is 
removed from the signal prior to ZCC calculation
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Uses of Energy and ZCC
Short Time Energy and ZCC can form the basis 
for :
– Automated speech “end point” detection

• Needs to be able to operate with background noise
• Needs to be able to ignore “short” background noises and 

intra-word silences (temporal aspects)

– Voiced\Unvoiced speech detection
• High Energy + Low ZCC – Voiced Speech
• Low Energy + High ZCC – Unvoiced Speech

– Parameters on which simple speech recognition\speaker 
verification\identification systems could be based 
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Pitch Period Estimation
Pitch period is equal to the inverse of the 
fundamental frequency of vibration of the 
vocal chords
It only makes sense to speak about the pitch 
period of a VOICED frame of speech
Number of techniques used to determine 
pitch period
– Time Domain
– Frequency Domain
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Time Domain Methods

Since pitch frequency is typically less then 600-700 
Hz, the speech signals are first low passed filtered to 
remove components above this frequency range
The two most commonly used techniques are:
– Short Time Autocorrelation Function
– Average Magnitude Difference Function (AMDF)

During voiced speech, the speech signal is “quasi-
periodic”
Either technique attempts to determine the period (in 
samples between “repetitions” of the voiced speech 
signalPr
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Autocorrelation Function
Correlation is a very commonly used technique in 
DSP to determine the “time difference” between 
two signals, where one is a “nearly perfect”
delayed version of the other
Autocorrelation is the application of the same 
technique to determine the unknown “period” of a 
quasi-periodic signal such as speech
The autocorrelation function for a delay value of k 
samples is:
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Autocorrelation Function
Clearly, φ(k=0) would be equal to the average energy of 
the signal s[n] over the N sample frame
If s[n] was perfectly periodic with a period of P samples 
then s[n+P]=s[n]
Therefore, φ(k=P)=φ(k=0)=Average Energy
While this is NOT exactly true for speech signals, the 
autocorrelation function with k equal to the pitch would 
result in a large value
For the various k values between 0 and P, the various 
terms (s[n]s[n+k]) in the autocorrelation function would 
tend to be a mixture of positive and negative values
These would tend to cancel each other out in the 
autocorrelation sum to yield very low values for φ(k)Pr
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Autocorrelation Function
This, for a given frame of N samples of 
VOICED speech, a plot of φ(k) versus k 
would exhibit distinct peaks at k values of 
0, P, 2P …., where P is the pitch period
The graph of φ(k) would be of quite small 
values between these peaks
This pitch period for that frame is simply 
got by measuring the distance, in samples, 
between the peaks of the graphs of the 
autocorrelation function
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A block diagram of the implementation of the autocorrelation 
function is shown below:

∑
−

=

+=
1

0
][][1)(

N

n
knsns

N
kφ

Pr
of

es
so

r E
. A

mbik
air

aja
h 

UNSW
, A

us
tra

lia



33

Average Magnitude Difference 
Function

The AMDF is similar but opposite to the 
Autocorrelation Function
For a delay of k samples, the AMDF is 
defined as

∑
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Average Magnitude Difference 
Function

For a given frame of VOICED speech, a plot of 
AMDF (D(k)) versus different values of delays 
(k), will exhibit deep “nulls” at k=0, P , 2P……
If is used as an alternative to autocorrelation as on 
some processor architectures, it may be less 
computationally intensive to implement
Care should be taken with both techniques to 
support the “overlap” into adjacent frames 
introduced by the the autocorrelation and AMDF
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A block diagram implementation of the AMDF function:

∑
−

=

+−=
1

0
|][][|1)(

N

n
knsns

N
kD

Pr
of

es
so

r E
. A

mbik
air

aja
h 

UNSW
, A

us
tra

lia



37Pr
of

es
so

r E
. A

mbik
air

aja
h 

UNSW
, A

us
tra

lia



38

Pre-emphasis Filter
Recall transfer function of vocal tract:

There is an –6dB/octave trend as frequency 
increases
It is desirable to compensate for this by 
preprocessing the speech.  This has the effect of 
cancelling out effect of glottis and is know as pre-
emphasis. 
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Pre-empahsis
The high pass filtering function can be 
achieved by use of following difference 
equation:

y(n) = s(n) – a s(n-1)
Normally a is chosen between 0.9 and 1.
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Exercise: Pre-Emhasis Filter
1. Use Matlab to plot the frequency response 

of a pre-emphasis filter with the following 
transfer function

H(z) = 1 –0.95z-1

2. Plot the spectra of a frame of speech 
before and after pre-emphasis filter has 
been applied 
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Short Time Fourier Transform
Spectrogram may be attained through use of 
STFT.
FT is carried out on a short sequence of signal. 
The signal may be windowed e.g. Hamming 
Window (see next slide)
Overlapping should also be carried out
Following formula for calculating STFT with 
window w or length N
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Hamming Window
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Exercise STFT
1. Generate a signal composed of 4 tones of 

different frequencies
2 tones should be present constantly and other 2 tones 
occuring at different times. 
Signal should be about 1 second in length in total and tones 
should have different levels

2. Write a script to perform the STFT
Include Hamming window
50% overlapping of frames

3. Plot a spectrogram of the signal.
4. Investigate effect of 

1. changing frame size
2. Changing number of points in FFT.

5. Record a voice signal and generate spectrogramPr
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Exercise: Signal Reconstruction
Part A – Entire Signal
1. Record a voice signal of length ~0.5s
2. Perform an FFT of the speech and plot its spectrum
3. Examine both magnitude and phase 
4. Recalculate the complex FFT coefficents from 

Magnitude and phase and check they are as in 3.
5. Reconstruct the entire speech using IFFT
Part B – Framed Signal (50% Overlapped)
1. Apply a Hamming window to each frame of signal 

prior to getting FFT
2. Reconstruct each frame using IFFT 
3. Use overlap and add tehnique to reconsrtruct speechPr
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