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Chapter 13 (Week 13)

Auditory Masking
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Anatomy of the ear

The ear  divided into three sections:
• The outer 
• Middle
• Inner ear (see next slide)

The outer ear is terminated by the eardrum 
(tympanic membrane).

Sound waves entering  the auditory canal of 
the outer ear are directed into the ear drum and 
cause it vibratePr
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Schematic diagram of the parts of the ear
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The vibrations are transmitted by the middle ear, 
an air filled section comprising a system of three 
tiny bones, the malleus ,incus and stapes , to the 
cochlea ( the inner ear).
The cochlea is a spiral if about 2 ¾ turns which 
unrolled would be about 3.5cm long.
The cochlea consists of three fluid-filled sections 
(see fig below).
One, the cochlear duct , is relatively small in 
cross-sectional area, and other two, the scala
vestibuli and the scala tympani are larger and 
roughly equal in area.Pr
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Cross section of the cochleaPr
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The scala vestibuli is connected to the stapes via 
the oval window (see next slide) .

The scala tympani terminates in the round 
window which is a thin membranous cover 
allowing the free movement of the cochlear fluid.

Running the full length of the cochlea is the 
Basilar Membrane (BM) which separates the 
cochlear duct from the scala vestibuli.

The Reissner membrane is very thin compared to 
the basilar membrane.Pr
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A longitudinal section of an uncoiled cochlea
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It  has been shown by 
Bekesey (1960) that 
when the vibrations of 
the eardrum are 
transmitted by the 
middle ear into 
movement of the 
stapes, the resulting 
pressure within the 
cochlea fluid 
generates a traveling 
wave of displacement 
on the basilar 
membrane.

The location of the 
maximum amplitude of this 
traveling wave varies with 
frequency of the eardrum 
vibrations

The response of the BM at 
an instant of time to a pure 
tone at the stapes is 
schematically shown below
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The basilar membrane varies in width and 
stiffness along its length 
At the basal end it is narrow and stiff whereas 
towards the apex it is wider and more flexible.
The maximum membrane displacement will 
occur at the stapes end for high frequencins
and at the far end (apex) for low frequencies.
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The wave motion along the BM is governed by the mechanical 
properties of the membrane and hydrodynamic properties of the 
surrounding fluid (scalas)

It appears that each point of the BM moves 
independently (i.e. a point on the basilar membrane is 
assumed to have no direct mechanical coupling to 
neighboring points).

However, the neighboring points are coupled 
through the surrounding fluid.Pr
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Sound Pressure Level
Atmospheric pressure is approximately 15 lb/in2 or 
1 bar. A variation of one millionth of the 
atmospheric pressure (or 1 µbar) is an appropriate 
stimulus for hearing. Such a pressure variation is 
generated in normal conversation by the human 
voice. 
The minimum level of pressure changes to which 
man is sensitive is well over 0.0002 µbars. 
A figure commonly used as the upper limit of 
hearing is 2000 µbars.
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At this upper limit, acoustic stimulus is accompanied 
by pain. We know,

dB (power) = 10 log[P0/Pi]

Since acoustic power is directly related to the 
square of acoustic pressure,

dB (pressure) = 10 log[(P0)2/(Pi)2 = 20 log[P0/Pi]

Pi is commonly taken as 0.0002 µbars (at or below 
the threshold for hearing). 

Given an upper limit of p0 as 2000 µbars, the 
Sound Pressure Level (SPL) of an acoustic stimulus 
is:

SPL = 20 log(2000 µbars/0.0002 µbars) = 20 log(107)
= 140 dB.Pr
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Figure below shows typical sound levels in dB SPL for various 
common sounds.

0 dB
20 dB
40 dB
60 dB
80 dB

100 dB
120 dB
140 dBGunshot at close range

Loud rock group
Shouting at close range

Busy street
Normal conversation
Quiet conversation

Country area at night
Soft whisper

Sound Pressure levels

Threshold of pain

Threshold of hearing
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Auditory Masking

The human auditory system is often modelled 
as a filter bank which is based on a particular 
perceptual frequency scale.
These filters are called ‘critical-band’ filters
From the point of view of perception, critical 
bands can be treated as single entities within 
the spectrum.
Signal components within a given critical band 
can be masked by other components within the 
same critical band.
This is called intra-band masking.Pr
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In addition, sounds on one critical band can mask 
sounds in different critical bands.
This is called inter-band masking.
While the masking process is very complex and only 
partially understood, the basic concepts can be 
successfully used in audio compression systems, so 
that better compression is achieved.
Many people have examined the human auditory 
system and have concluded that the ear is primarily a 
frequency analysis device and can be approximated 
by a bandpass filter bank, consisting of strongly 
overlapping bandpass filters (known as the critical-
band filters). 
Twenty five critical bands are required to cover 
frequencies of up to 20 kHzPr
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These filters may be spaced on a perceptual frequency 
scale known as ‘Bark scale’.

Experiments on the response of the basilar membrane 
in the ear have shown a relationship between 
acoustical frequency and perceptual frequency 
resolution.  

A perceptual measure, called the Bark scale, provides 
the relationship between the two.

The relationship between the frequency in Hz and the 
‘critical band rate’ (with the unit of Bark) can be 
approximated by the following equations:Pr
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( ) kHzffBarkzv 5.176.0tan0.13)( 1 <= −

( ) kHzffBarkzv 5.1log2.147.8)( 10 >+=

Where f is the frequency in kHz and zv is the 
frequency in Barks.  Figure  below shows a plot 
of Barks vs. frequency (in kHz) up to 4 kHz
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The non-linear 
nature of the 
Bark scale can 
be clearly seen.
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Critical bandwidth is roughly constant at about 
100 Hz for low centre frequency (< 500 Hz) (see 
next slide)

For high frequencies, the critical bandwidth 
increases, reaching approximately 700 Hz at centre 
frequencies around  4 kHz. 

The filters are approximately constant Q  at 
frequencies above 1000 Hz, with a Q value of 5 or 
6. 

Twenty five critical bands are required to cover 
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Critical Band-
Rate (Bark)

Lower Edge 
(Hz)

Centre Freq. 
(Hz)

Upper Edge 
(Hz)

BW(Hz) Q-factor

1 0 50 100 100 0.5
2 100 150 200 100 1.5
3 200 250 300 100 2.5
4 300 350 400 100 3.5
5 400 450 510 110 4.5
6 510 570 630 120 4.75
7 630 700 770 140 5
8 770 840 920 150 5.6
9 920 1000 1080 160 6.25
10 1080 1170 1270 190 6.15
11 1270 1370 1480 210 6.52
12 1480 1600 1720 240 6.66
13 1720 1850 2000 280 6.6
14 2000 2150 2320 320 6.72
15 2320 2500 2700 380 6.58
16 2700 2900 3150 450 6.44
17 3150 3400 3700 550 6.18
18 3700 4000 4400 700 5.71
19 4400 4800 5300 900 5.33
20 5300 5800 6400 1100 5.27
21 6400 7000 7700 1300 5.38
22 7700 8500 9500 1800 4.72
23 9500 10500 12000 2500 4.20
24 12000 13500 15500 3500 3.86
25 15500 19500 - - -

Critical bands of the auditory system
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Auditory 
Filtering 
may be 
carried out 
using 
Gammatone
filters

)2cos()()( )(21 nTfπenTang c
nTfbERBπN c−−= Impulse response

fc centre frequency, T is the sampling period, n is the discrete time 
sample index, a, b constants, and ERB(fc) is the equivalent 
rectangular bandwidth of an auditory filter. At a moderate power
level, cc ffERB 108.07.24)( +=
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Human Auditory Perception
For the human auditory system, the 
perception of the sound is important. 
We do not perceive frequency but instead 
perceive pitch. 
We do not perceive level, but loudness.  
We do not perceive spectral shape, 
modulation depth, or frequency of 
modulation, instead we perceive 
sharpness, fluctuation strength or 
roughness. 
Also we do not perceive time directly, but 
perceive the subjective duration. 
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Human Auditory Perception……
In all the hearing sensations, masking
plays an important role in the frequency 
domain, as well as in the time domain. 
The information received by our auditory 
system can be described most 
effectively in the three dimensions of
loudness, critical-band rate and time. 
The resulting three-dimensional pattern 
is the measure from which the 
assessment of sound quality can be 
achieved. Pr
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Masking
The effect of masking plays a very 
important role in hearing, and is 
differentiated into two forms:

Simultaneous masking;

Nonsimultaneous masking.

Pr
of

es
so

r E
. A

mbik
air

aja
h 

UNSW
, A

us
tra

lia



Simultaneous Masking
An example of simultaneous masking would 
be the case where a person is having a 
conversation with another person while a loud 
truck passes by.
In this case, the conversation is severely 
disturbed and to continue the conversation 
successfully, the speaker has to raise his 
voice to produce more speech power and 
greater loudness. 
In music, similar effects take place where 
different instruments can mask each other 
and softer instruments become only audible 
when the loud instrument pauses
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Masking is usually described in terms of the 
minimum sound-pressure level of a test sound (a 
pure tone in most cases) that is audible in the 
presence of a masker.

Figure below contains examples of maskers at 
different frequencies and their masking patterns.  

Most often, narrow-band noise of a given centre 
frequency and bandwidth is used as a masker.

The excitation level of each masker is 60 dB.

Comparing the results produced for different centre 
frequencies of the masker, we find the shapes of the 
masking curves are rather dissimilar irrespective of 
the frequency scaling (linear/ log) used. 
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a b

c

Example of masking Curves
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However, one can observe that the shapes of 
the masking curves are similar up to about 500 
Hz on linear frequency scale (Fig.(a)) while for 
centre frequencies above 500 Hz there is some 
similarity on the logarithmic frequency scale 
(Fig. (b)). 

These results match the critical band scale 
quite well, since the critical band-rate scale (as 
explained before) follows  a linear frequency 
scale up to about 500 Hz and a logarithmic 
frequency scale above 500 Hz, and supports the 
notion that signals within a given critical band 
can be treated as a single ‘perceptual entity’.Pr
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When frequency is converted to critical-band 
rate the masking pattern shown in Figs. (a) and 
(b) changes to those shown in Fig (c) (see 
previous diagram)

The advantage of using the critical band-rate 
scale is obvious, namely that the shape of the 
masking curves for different centre frequencies 
are very similar (Fig. c.)

Many other effects such as pitch, loudness 
etc. can be described more simply using the 
critical-band rate scale than using the normal 
linear frequency scale.
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Threshold in Quiet
The effect of masking produced by narrow-
band maskers is level dependent and therefore 
has a nonlinear effect. 
Figure below shows the masking thresholds of 
narrow-band noise signals with a bandwidth of 
90 Hz, centred at 1 kHz, at various sound 
pressure levels LG.  
The masking thresholds for narrow-band noise 
signals show an asymmetry around the 
frequency of the masker.
The low frequency slopes (see next slide) appear to 
be unaffected by the level of the maskerPr
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Threshold in quiet and masking curve of narrowband 
noise signals centred at 1.0 kHz at various SPLs (LG)
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In the figure (previous slide) threshold in quiet or 
absolute threshold of hearing is given as a baseline.

All of the masking thresholds show a steep rise 
from low to higher frequencies up to the frequency of 
maximum threshold. Beyond this frequency, the 
masking threshold decreases quite rapidly toward 
higher frequencies for low and medium masker 
levels(LG = 20, 40 and 60 dB). 

At higher masker levels  (LG = 80 and 100 dB)  the 
slopes towards the higher frequencies becomes 
increasingly shallow. That is, signals with 
frequencies higher than the masker frequency are 
masked more effectively than signals with 
frequencies lower than the masker frequencyPr
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Simultaneous masking
Simultaneous masking is a frequency domain 
phenomenon where a low-level signal (su) can 
be made inaudible by a simultaneously occurring 
stronger signal (so), if both signals are close 
enough to each other in frequency (See Figure ).
The masker is the signal So, which produces a 
masking threshold similar in shape to a 
Gaussian distribution. 
Any signal within the skirt of this masking 
threshold will be masked by the presence of So. 
The weaker signals S1 and S2 are completely 
inaudible. This is because their individual sound 
pressure levels are below the masking threshold.Pr
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Without a masker, a signal is inaudible if its sound pressure level is 
below the threshold in quiet
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The signal SL is only partially masked and the 
perceivable portion of the signal lies above the 
masking curve. 

Thus, in the context of signal coding, it is possible 
to increase the quantisation noise in the subband
containing the signal SL up to the level AB, which 
means that fewer bits are needed to represent the 
signal in this subband. 

We have just described masking by only one 
masker. If the source signal consists of many 
simultaneous maskers, a global masking threshold 
can be computed as a function of frequency for the 
signal as a whole.Pr
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Terhardt’s Auditory Masking Model

This model is based on Tehardt’s
psychoacoustic model where the auditory 
system is represented using the critical-band 
rate scale.
Spectral components within a given critical 
band can be masked by other components 
within the same critical band; this is called 
intra-band masking. 
In addition, sounds within one critical band can 
also mask other sounds in different critical 
bands. This is called inter-band masking. Pr
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Auditory Masking Model
Experiments on pitch perception carried out  by 
Terhardt have shown that there is a direct 
relationship between the level of a masker and 
the amount of masking it induces on another 
frequency component. 

Tehardt approximated the masking curves 
shown in the next slide using straight lines and 
used the characteristic to represent the 
masking effect produced by a spectral 
component of frequency zv (Barks) on another 
spectral component of frequency zu (Barks).
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Masking Threshold produced by a spectral component at 
frequency zv (Barks) for various SPLs

SPL

zv

L v
Slope 
27 dB/Bark

Slope dependent  
on level

Lk

Frequency in Barksz
u

The high frequency slope (svh) for the masking threshold curve 
is given by

  
svh = −24 −

230
fv

+ 0.2 Lv dB / BarkPr
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where Lv is the level of the masker (in dB SPL), fv is the 
masker component frequency in Hz and svh is the slope. 
Tehardt’s experiments showed that the sound pressure level of 
the masker is not so important when computing the masking 
effect on lower frequencies.

Thus, the low-frequency slope(svl) of the masking curve is 
independent of Lv and is set to 27 dB/Bark.

If the spectrum contains N frequency components, the overall 
masking threshold of a component at zu (Barks) due to all other 
components in the spectrum is given by
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A maskee u being masked 
by a lower frequency 
masker v

A maskee u being masked 
by a higher frequency 
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Note that the above equation is not 
evaluated for u=v. i.e.it is assumed that 
the maskee does not mask itself. The 
resultant inter-band masking threshold 
value can be estimated using the above 
equation (previous slide)
Example:  There are N = 10 spectral 
components, with the component at u = 
5 being the maskee. 
All other frequency components will 
mask this component. The resultant 
masking threshold value can be 
estimated using the equation given in 
the previous slidePr
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Masking calculation

dB

Frequency1 2 3 5 6 7 8 9 104

u = 5 
(Maskee)Low frequency 

maskers
High frequency 
maskers

Masking curves
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Intra-band masking
The next step is to take the effect of 
intra-band masking into account. 
There are two types of masking that 
have been experimentally observed, 
which can occur within a critical band. 
The first one is  usually referred to as 
‘tone-masking-noise’ and 
The second one is ‘noise-masking-
tone’. 
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Tone Masking Noise : EN = -(14.5 + i) dB

Noise masking Noise: ET = -5.5 dB

where ET and EN are tone and noise energies, i
is the critical band number. 

From the first equation (see above) states that 
a tone will mask the noise in a critical band if 
the power of the tone is at least 14.5 + i dB 
higher than the noise power (see next slide (a)). 

It is evident from the above equation that in 
higher critical bands the power of the tone must 
be higher in order to mask the same noise 
power as in the lower critical band.  This is 
because the critical bandwidth increases with
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Noise masking Noise: ET = -5.5 dB

Similarly using the above Equation, one can 
see that a tone will be masked within a critical 
band if the tone is 5.5 dB lower than the noise 
energy in the same band (see slide b below)
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There are many ways of calculating the tone-
like or noise-like nature of the signal .

For simplicity it is assumed here that a signal 
in a lower critical band (up to 2.5 kHz) is more 
tone-like in nature while a signal in a higher 
critical band is more noise-like, as the higher 
critical bands have wider bandwidths. 

Previous equations can now be rewritten as

  

2.5kHz < f ≤ 4 kHz

15≤ i ≤17EN = - K .(14.5 + i) dB

  

0 ≤ f ≤ 2.5 kHz

0 ≤ i ≤14
ET = - K.(42.5 - i) dB

where K is a scaling factor that takes a value between 0.5 and 
1.0.
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The overall masking threshold is now given by

Nth(zu) =    Th(zu) + EN (or ET) 

Above Equation is evaluated for every 
frequency component in the spectrum thus 
obtaining a global masking threshold as a 
function of frequency. 

From the overall masking threshold values, the 
Just Noticeable Distortion (JND) vale in each 
critical band can be calculated, by selecting the 
minimum value of Nth(zu) in that band. 

Any signal component above the JND value in 
each critical band conveys signal information, 
while signal components below this threshold
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Figure (a) below 
shows a plot of the 
power spectrum of 
one frame (256-
point FFT used) of 
a voiced speech 
signal, at 8 kHz, 
along with the 
calculated global 
masking threshold  
values 

Figure (b) plots the same power 
spectrum along with a plot of the minimum 
threshold value (JND) in each critical band.Pr
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As can be seen , the JND value for each band is simply 
minimum value of the masking threshold in that band.

The distribution of the critical bands can be seen  with 
the JND values changing sharply from band to band.Pr
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Nonsimultaneous masking 
Nonsimultaneous masking is also 
referred to as temporal masking. 
Temporal masking may occur when two 
sounds appear within a small interval of 
time. 
Two time domain phenomena play an 
important role in human auditory 
perception,:

• pre-masking 
• post-masking.Pr
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Temporal masking is illustrated in the 
diagram shown below. When the signal 
precedes the masker in time, the condition is 
called post-masking; when the signal follows 
the masker in time, the condition is pre-
masking.

60

Sound pressure  
Level in dB

0-20-40 200 0 160 Time (ms)

Simultaneous 
Masking

Pre-masking
Post-masking

Masker

Temporal Masking. Acoustic events in the 
dark areas will be masked.Pr
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Post-masking is the more important 
phenomenon from the point of view of efficient 
coding. 

It results from the gradual release of the effect 
of the masker, i.e. masking does not immediately 
stop when the masker is removed, but rather 
continues for a period of time following this 
removal. 

The duration of post-masking depends on the 
duration of the masker. 

In the diagram (see next slide), the dotted line 
indicates post-masking for a long masker 
duration of at least 200ms. 

The degree of post-masking decreases from the
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Sound Pressure 
Level in dB

Masker Duration 
200 ms

Masker Duretion 
5 ms

Time200 ms 300 ms0

Post-masking  due to 200 ms 
masker (dotted line)

Post-masking due to 5 ms 
masker (solid line)

60 dB
Simultaneous Masking

Postmasking produced by very short masker 
burst , such as 5 ms (See above) behaves quite 
differently.

Post-masking in this case decays much faster 
so that after only 50 ms the threshold in quiet is 
reached. This implies that post-masking strongly 
depends on the duration of the masker and 
therefore is another highly nonlinear effect. 
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Temporal masking Model I
This model is based on the fact that 
temporal masking decays approximately 
exponentially following each stimulus. The 
masking level calculation for the mth
critical band signal             is( )mtM f ,

( ) ( ) ( ) ( )
( )⎩

⎨
⎧

∆−
∆−>

=
otherwisemttLc

mttLcmtLmtL
mtM f ,,

,,,,
,

0

0

where                 . The amount of temporal 
masking TM1 is then chosen as the average of  
Mf(t,m) for each frame calculation.

( )mτc −= exp0
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Normally first order IIR low-pass filters are used to 
model the forward masking. The time constant,τm, of 
these filters are as follows, in order to model the 
duration of forward masking more accurately.

( )min100min
100 ττ
fc
Hzττ
m

m −⋅+=

The time constants τmin and τ100 used were 8 ms 
and 30 ms, respectively. The time constants were 
verified empirically by listening tests and were 
found to be much shorter than the 200 ms post-
masking effect commonly seen in literature.Pr
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Temporal masking Model II
Jesteadt et al describe temporal masking as 
a function of frequency, masker level, and 
signal delay. 
Based on the forward masking experiments 
carried out by Jesteadt, the amount of 
temporal masking can be well-fitted to 
psychoacoustic data using the following 
equation:

( ) ( ) ( )( )cmtLtbamtM f −∆−= ,log, 10Pr
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( ) ( ) ( )( )cmtLtbamtM f −∆−= ,log, 10

where              is the amount of forward masking (dB) in the mth
band, ∆t is the time difference between the masker and the 
maskee in milliseconds,  is the masker level (dB), and a, b, and c, 
are parameters that can be derived from psychoacoustic data.

The parameter a is based upon the slope of the time course of 
masking, for a given masker level. 

Assuming that forward temporal masking has duration of 200 
milliseconds, and thus b may be chosen as log10(200) 

Similarly a, c are chosen by fitting a curve to the masker level 
data provided by Jestead

( )mtM f ,
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Combined Masking Threshold
A combined masking threshold  may be 
calculated by considering the effect of both 
temporal and simultaneous masking. 

( ) ∞≤≤+= pSMTMMT
ppp 1,

/1

where MT is the total masking threshold, TM is 
temporal masking threshold, and SM is the 
simultaneous masking threshold. The parameter p
defines the way the masking thresholds add. P is 
chosen as 5Pr
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ELEC9344:Speech & Audio ELEC9344:Speech & Audio 
ProcessingProcessing

Chapter 14 (week 14)

Wideband Audio Coding
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Introduction

Reduction in bit rate requirement for high 
quality audio has been an attractive proposition 
in applications such as multimedia, efficient 
disk storage, and digital broadcasting. 
A number of audio compression algorithms 
exists 
Among them, the most notable is the 

ISO/MPEG standard, which is based on 
Modified Discrete Cosine Transform method 
and provides high quality at about 64 kb/s. Pr
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Wideband Audio Coding

The data rate of a high fidelity stereophonic digital 
audio signal is about 1.4 Mb/s for 44.1 kHz sampling rate 
and 16 bits/sample uniform quantisation. 

This rate is simply too high for many transmission 
channels and storage media. 

It severely limits  the application of digital technology 
at a time when high quality audio is becoming 
increasingly important. 

As a result, data reduction of digital audio signals has 
recently received much attention. 
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However, low bit-rate coding can introduce distortion 
such that listeners may deem the sound quality of the 
decoded signal unacceptable. 

The masking properties of the human ear can provide 
a method for concealing such distortion.

The most successful of the current low bit-rate 
wideband coders is ISO/MPEG which is based on 
subband coding and use psychoacoustic models to 
determine and to eliminate redundant audio 
information. 

This coder gains in efficiency by first dividing the 
frequency range into a number of bands, each of which 
is then processed independently. Pr
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The algorithm results in data rates in the range of 2 - 4 
bits/sample. 

If more than one channel sound is to be processed then 
samples from each channel are treated independently.

First, for each channel the masking threshold is 
determined. 

Then redundant, masked samples, are discarded and 
the remaining samples are coded using a deterministic 
bit allocation rule.
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ISO/MPEG Layer -I

In ISO/MPEG Layer -I model the filterbank
decomposes the audio signal into 32 equal bandwidth 
subbands. 

Efficient implementation is achieved by a polyphase
filterbank, which however,  cannot provide the resolution 
required the psychoacoustic model. 

Therefore, the ISO/MPEG coder employs an FFT 
analyser which further increases the overall computational 
load. 

Figure 1 shows the main functional elements used by 
the ISO/MPEG coder.Pr
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Psychoacoustic 
Model

Polyphase 
Decomposition

Bit  and 
scalefactor 
allocation 

 and coding 

Signal - to - mask  
ratios 

Input  
audio

Requantiser

      FFT 

Mux
Digital

channel

Block Diagram of the ISO/MPEG Layer -I coder

We can show that the  sub band decomposition carried 
out using Wavelet Packet (WP) decomposition provides 
sufficient resolution to extract the time-frequency 
characteristics of the input signal thus eliminating the 
requirement for a separate FFT analysis to derive a 
psychoacoustic model.
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Wideband Audio Coding Algorithms

Some of the important algorithms and standards for 
wideband speech and audio coding is reviewed in this 
section. There are two fundamentally different 
techniques are available for the compression of  PCM 
audio data:

• Time domain coding • Frequency domain coding

Time domain coders exploit temporal redundancy 
between audio samples such that one can maintain the 
same Signal-to-Noise ratio at a reduced bit rate (e.g. 
Differential PCM coders).
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Frequency domain coders are designed to identify and 
remove redundancy in frequency domain. 

A common features of all frequency domain coders is the 
time-frequency transform, which maps a nonstationary
signal onto the time-frequency plane. 

This mapping may be achieved by a transform, resulting 
in a transform coder or by subband decomposition, resulting 
in a subband coder. 

The time-frequency representation lends itself to the 
identification and removal of perceptually redundant signal 
components. 

The subband samples are quantised with the minimum 
resolution necessary to ensure that the quantiser noise is 
below the threshold of perceptible distortion.Pr
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Powerful algorithms and standards for wideband speech 
and audio coding enhance service in communication and 
other applications. 

Wideband speech covers  50 Hz to 7 kHz frequency 
band and  wideband audio covers 10 Hz to 20 kHz 
frequency band. 

These two signals differ not only in bandwidth, but also 
in listener expectation of offered quality.  

Table 1 provides an overview of wideband speech and 
audio coding algorithms.
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Standard Input Coder Rate (kb/s)

CCITT G.721 Toll-quality 
Speech

ADPCM 32

CCITT G.722 Wideband 
Speech

SB, ADPCM 
and QMF

48, 56, 64

LD-CELP Wideband 
Speech

LP and VQ 8, 16, 32

ISO/MPEG Wideband 
Audio

SB, TC, EC and 
PaM

32 - 192

MUSICAM Wideband 
Audio

SB and PaM 64 - 192

PASC Wideband 
Audio

SB and PaM 128 - 192

ASPEC Wideband 
Audio

TC, EC and 
PaM

64 - 192Pr
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Wideband speech and audio coding techniques 

ADPCM: Adaptive differential pulse code modulation

EC: Entropy coding

LP: Linear prediction

PaM: Psychoacoustic model

QMF: Quadrature mirror filter

VQ: Vector quantisation

SB: Subband coding

TC: Transform coding
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Wavelet Packet based scalable audio coder

The objective is to use  wavelet packet decomposition 
as an effective tool for data compression and to achieve 
the high quality low complexity scalable wavelet based 
audio coding. 

The  proposed features:

The bit rate can be  scaled to any desired level to 
accommodate many practical channels

Most industrial standard sampling rates can be  
supported (e.g.  44.1 kHz, 32 kHz, 22 kHz, 16 kHz and 8 
kHz) Pr
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An example of a 24-band WP representation is shown 
in the next slide where the sampling rate is 16 kHz. 

This filterbank structure is identified because it has 
sufficient resolution for direct implementation of the 
psychoacoustic model. 

Also the subband bandwidths and centre frequencies 
closely approximate the critical bands. 

The subband numbering (see figure) does not take 
into account the switching of the highpass and lowpass
spectra as the output of each highpass branch in the 
decomposition tree is decimated. 
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Appropriate numbers for reordering the spectra can be 
illustrated, for example, using a 4 level Wavelet Packet 
decomposition tree as shown in the Table below:

Band 
No: ->

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L H

Level  1 1 2 3 4 5 6 7 8 1
6

15 14 13 12 11 10 9

L H L H

Level  2 1 2 3 4 8 7 6 5 1
6

15 14 13 9 10 11 12

L H L H L H L H

Level 3 1 2 4 3 8 7 5 6 1
6

15 13 14 9 10 12 11

L - Lowpass subband; H - Highpass subband
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The diagram (see next slide) displays the bandwidths 
of the critical band filters versus their respective centre 
frequencies. 

The WP decomposition closely approximates the 
critical bands, allowing the output of the WP expansion 
to directly drive the psychoacoustic model thereby 
eliminating the need for an FFT, and reducing the 
computational effort.
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Coder 
Structure

A block diagram of a Wavelet Packet  
decomposition based audio coder is shown in  the 
next slide where the sampling frequency of the 
audio signal is 16 kHz.  
A six-level decomposition is carried out thus 
resulting in a 64 band WP decomposition. 
Psychoacoustic auditory masking is a phenomenon 
whereby a weak signal is made inaudible by a 
simultaneously occurring stronger signal. 
Most progress in audio compression in recent years 
can be attributed to successful application of  
auditory masking model.Pr

of
es

so
r E

. A
mbik

air
aja

h 

UNSW
, A

us
tra

lia



64 Band  
Wavelet  
Packet  

Decompo- 
sition 

256 audio 
samples

Quantisation 
and 

Block 
companding

Bit  
Allocation

Auditory 
Masking 
Model

Bit Allocation 
per  band  

WPT Coefficients Coded 
subbands

Encoder Block 
Diagram

In a psychoacoustic model, the signal spectrum is divided into a
number of critical bands. 

In the above implementation, the 64 band WP decomposition are 
grouped together in a particular manner to obtain 22 critical bands 
and an auditory masking model could then be directly applied in 
the wavelet domain. 
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64 Band  
Wavelet  
Packet  

Decompo- 
sition 

256 audio 
samples

Quantisation 
and 

Block 
companding

Bit  
Allocation

WPT Coefficients Coded 
subbands

Auditory 
Masking 
Model

Bit Allocation 
per  band  

Encoder Block 
Diagram

The maximum signal energy and the masking threshold in each 
band can be  calculated (see later on)

The masking  model output can be used to determine the bit 
allocation per subband for perceptually lossless quantisation.

The samples are then scaled and quantised according to the 
subband bit allocation.Pr
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Wavelet Function

For the Wavelet Packet Decomposition, an FIR Perfect 
Reconstruction-Quadrature Mirror Filters (PR-QMF) can be 
utilised. 

In this study, a 16-tap FIR lowpass filter derived from the 
Daubechies wavelet is used. 

Daubechies wavelet has the desirable regularity property as it 
generates a lowpass filter with transfer function Ho(z) with the 
maximum number of N/2 zeros at ω = π, where N is length of filter  
impulse response such that |Ho(θ)| is maximally flat. 

The diagram (see next slide) shows  the magnitude response of 
the {Ho(z), H1(z)} QMF pair used as the basis of the decomposition 
filterbank. Pr
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Wavelet Function

The magnitude response of the 16-tap lowpass filter based on the 
Daubechies wavelet (‘dB8’) provides an acceptable compromise 
between the subband separation and increased computational load.
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Although aliasing effects between neighbouring bands 
can be reduced by using filters with narrow transition 
bands, such effects will inevitably exist since any 
practical filters have to be of finite length.  

The length of the filter impulse response determine the 
width of the transition band which in turn specifies the 
overlap of the subband filter frequency responses. 

A longer filter impulse response results in a sharper 
transition between the subbands. 

However, any increase in the length of the filter 
impulse response is also accompanied by a corresponding 
increase in the computational load which therefore has to 
be weighted against the gain in coding efficiency due to 
narrower transition bands.Pr
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Implementation of the Auditory Masking Model

Masking is the process where a number of least 
significant bits (LSBs) are removed from the binary 
representation of each sample which are deemed to be 
imperceptible by the auditory masking model. 

Identifying the LSBs that can be safely removed from the 
subband samples is a difficult task. 

However, it is possible to identify the imperceptible 
LSBs by calculating the masking threshold from the 
subband signal power.

The auditory model used here determines only the noise 
masking properties of the subband signals. Pr
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Implementation of the Auditory Masking Model ………..

Implementation of tonal masking requires the detection 
of tonal components and the identification of the frequency 
and power of each tonal component. 

This, in turn, require a high resolution subband
decomposition, causing a significant increase in the total 
computational effort.

The auditory model used in this study is similar to the 
one used by Black and Zeytinoglu (1995).  

The steps involved in calculating the masking threshold 
per critical band are as follows:

Pr
of

es
so

r E
. A

mbik
air

aja
h 

UNSW
, A

us
tra

lia



Calculate the maximum power per critical band (i.e. 
maximum squared coefficient in each band)

P(k) = 10 log10(max{Ck(1)2, Ck(2)2, Ck(3)2, ..... Ck(L)2,})

where Ck(1), Ck(2), Ck(3), ..... Ck(l)  are WP coefficients in 
subband k and L is the number of coefficients per band.

It is also possible to use power per critical band by 
calculating the average sum-square of the coefficients. Also 
using the maximum squared coefficient in each band would 
provide a sufficiently accurate measure of power in that 
band, whilst also lowering the complexity and 
computational load.

Pr
of

es
so

r E
. A

mbik
air

aja
h 

UNSW
, A

us
tra

lia



Calculate the centre frequency in Barks.

Identify the masker in a critical band and calculate the amount 
of masking it introduces other critical bands. This can be 
calculated  using the piecewise linear approximation 
equation provided by Black(1995) for the masking shape of the 
masker at different power levels.

Calculate the value of self masking (i.e. Spectral components 
within a critical band can be masked by other components 
within the same critical band.)

Calculate the total masking level by summing the masking 
contribution from all the subband signal components.
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Figure (a) below shows one frame of the music signal that was 
decomposed using WP decomposition . Figure (b) shows the 
maximum energy per critical band and the estimated global 
masking threshold for each critical band for the same frame of 
music  signal sampled at 16 kHz.
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Bit Allocation

From the global masking thresholds the bit allocation per band is 
then determined.

Figure (next slide) shows the parameters related to auditory 
masking. 

The distance between the level of masker (shown as a tone in 
Figure ) and the masking threshold is called Signal-to-Mask Ratio 
(SMR). Its maximum value is at the left border of the critical band 
(point A). 

Within a critical band, coding noise will not be audible as long
as its SNR is higher than its SMR. 

Let SNR(m) be the signal-to-noise ratio resulting from m-bit 
quantisation, the perceivable distortion in a given subband is then 
measured by NMR(m) = SNR(m) -SMRPr
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NMR(m) describes the difference between the coding noise in a 
given subband and the level where a distortion may just become 
audible. The above discussion deals with masking by only one 
masker. 

If the source signal consists of many simultaneous maskers, a global 
masking  threshold is calculated as discussed  and the bit allocation 
can be determined by using  the SMR.
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Unconstrained number of bits to be allocated for each frame

Firstly the number of bits per subband set to zero 
and the SMR for each band is calculated: {i.e signal 
power – auditory masking threshold}

Then for each subband the SNR is calculated by :

SNR = 6.02B –7.2   dB

The NMR per band is then calculated as                     

NMR = SMR-SNR

If the NMR for a band is greater than zero the 
number of bits allocated to that band is increased by 
one.  This procedure is repeated until the NMR is 
zero, i.e. the quantisation noise is imperceptible. Pr
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Bit Allocation procedure for constrained number of bits per frame

For the allocation of a constrained number of bits 
the SMR for each band is again calculated and initial 
number of bits per subband set to zero as before.  

Then the subband with the highest NMR is found 
and an extra bit allocated to that band.  

This search and allocate procedure is repeated 
until the total number of bits allowed have been 
allocated.  

A flowchart for this procedure is given in the next 
slide. Pr
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Bk = Bk + 1

Auditory Masking
Thresholds Tgmin(i)

Start

Calculate SMR for Each
Band i

SMR(i) = SPL(i) – Tgmin(i)

Set Number of
Allocated Bits Per

Subband (Bi) to zero

For Each Subband i
SNRi = Bi*6 – 7.2

NMRi = SMRi - SNRi

Max. Bits
Allocated ?

Find Subband k W ith
Highest NMR

Stop

No

Yes

Bit allocation procedure 
for constrained number 
of bits
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Scaling and Quantisation

64 Band  
Wavelet  
Packet  

Decompo- 
sition 

256 audio 
samples

Quantisation 
and 

Block 
companding

Bit  
Allocation

Auditory 
Masking 
Model

Bit Allocation 
per  band  

WPT Coefficients Coded 
subbands

Once the bit allocations per subband have been determined, 
the WP coefficients in each subband are scaled and quantised.  
Coefficients are scaled so that the maximum absolute value is 
one in each subband and the scalefactors are recorded for 
decoding. Pr
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The scaling reduces the amount of bits required 
since the coefficients now only have to be quantised 
to a level in the range –1 to +1.  

Scaling is similar to block companding (See next 
few slides)

Block Companding

In block companding the number of bits required 
to encode a subband block of samples can be 
reduced by removing redundant most significant 
bits (MSBs).  
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For this description of block companding an 
assumption will be made that the samples of the 
signal in question are all positive.  

If the signal has been digitised using a uniform 
analogue-to-digital converter with a resolution of B 
bits, then there are 2B quantisation levels available 
and the levels are 0, 1, 2,…, 2B – 1, i.e. 2B – 1 is the 
maximum amplitude available.  

If a sample is at the maximum value then bit B will 
be set to 1.  

For low amplitude samples one of the lower bit 
positions will be a leading 1 and all of the more 
significant bit positions will be 0.  Pr
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These zeros can be removed (and only the lower 
bits stored) and be replaced without altering the 
signal, reducing the amount of storage space 
required for the sample.

Block companding refers to the fact that the 
samples are grouped together into a block.  

Such a block would be a set of samples from the 
same subband.  

Companding a block, as opposed to each sample 
individually, reduces the amount of sideband 
information (i.e. the number of bits discarded) that 
has to be stored.  Consider such a block of N 
samples with B bit resolution.  Pr
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If the highest position of a leading “1” is bit M in 
the block, then we can discard bits M+1 to B before 
storage, and replace them later, without altering the 
signal stored.  This process is indicated below:  

B M 1

0 0 0 0 0 - 1 0 1

0 0 0 1 0 - 0 0 1

0 0 0 0 1 - 1 1 0

… … … … …

-

… … …
0 0 0 0 1 - 0 0 1

0 0 0 0 1 - 0 1 1

0 0 0 0 1 - 0 0 0

Bits

Samples

1

2

N

Block Companding
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As can be seen, the MSBs that are shaded dark are 
all zero and so can be discarded.  

However, due to the position of the leading “1” in 
sample 2, M bits are required for each sample in the 
block.  

So for this block a total of N × M bits are required 
for storage, a saving of N(B - M) bits.  

For each block the number M also has to be stored 
in order for the decoder to reconstruct the 
companded block.  

The decoder will place M leading 1s or 0s in front 
of each sample, depending on the sign.  Pr
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This data is part of the sideband information that 
has to be stored along with the data itself.

Quantisation by Masking of Least Significant Bits

To consider the masking by least significant bit 
(LSB) removal, consider a sample from a subband
that has an allocation of L bits per sample.  

If M bits remain after block companding, then only 
bits K to M must be stored, where K=M-L.  

This is shown in  the next slide for a sample with 
B bits originally.Pr
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B M K 1

Transmitted to Decoder

Removed at Encoder

Bit Positions

Bit Removal By Encoder

As can be seen the encoder only needs to transmit bits K to 
M, which are shaded in dark grey.  All remaining bits can be 
discarded.  At the decoder the missing MSBs and LSBs are 
replaced either by 1s or 0s depending on the sign of the 
sample.

Note that the number of bits per sample for each subband
must also be stored as part of the sideband information.
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Results
The audio coder described in this chapter was  
implemented in Matlab on several short pieces of music.  
Almost transparent coding was achieved with an average 
of 3 to 4 bits per sample with unconstrained bit 
allocation. 
Experimental data shows that the coder operates well, 
significantly reducing the bit rate of the signal with little 
perceptible distortion introduced.  
The coder performs almost equally well for several types 
of music, with approximately the same bit rate required.
Due to the nature of the WP tree used for the audio coder 
it can be adapted to operate at most of the industrial 
sampling rates which is another important feature for a 
real time audio coder i.e. it is scalable. Pr
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