
Chapter 5b: Timers

Professor Eliathamby Ambikairajah

Head of School of Electrical Engineering and
Telecommunications, UNSW, Sydney

27 March 2017ELEC2117

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Timers
 There are three completely independent timers/counters available in PIC16f886 micro

controllers and they are marked as TMR0, TMR1 and TMR2

 TMR0 has a wide range of applications in practice: (a) Time measurement
(b) Counting external pulses (c) Generating pulses of arbitrary duration

 TMR0 operation: When used as a timer, the Timer0 module can be used as either an
8-bit timer or an 8-bit counter

 Timer0 appears as register TMR0 at memory location H’01’ in data memory bank 0

 TMR0 is configurable and controlled by a number of bits that appear in the
OPTION register

1

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Timers
 When used as a 8-bit timer, the Timer0 module will increment every

instruction cycle.

 Timer mode is selected by clearing the TOCS bit (bit5) of OPTION
register to ‘0’

 When used as a 8-bit counter, the Timer0 module will increment on every
rising or falling edge of the TOCKI pin (PA4/RA4 of PORTA).

 The incrementing edge is determined by the T0SE bit of the OPTION
register.

 The counter mode is selected by setting the T0CS bit (bit5) of Option
register to ‘1’.

T0CS – TMR0 Clock Select bit
1 – Transition on TOCK1 pin (PA4/RA4 of PORTA); i.e clock mode
0 – Internal instruction cycle clock (Fosc/4) i.e timer mode

TOSE – TMR0 Source Edge Select bit
1 – increment on high to low transition on TOCKI pin;
0 – increment on low to high transition on TOCKI pin;

2

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Option Register

RBPU – PORTB Pull-up Enable bit
1 – PORTB pull-ups are disabled
0 – PORTB pull-ups are enabled by individual PORT latch values

PSA – Prescaler Assignment bit
1 – Prescaler is assigned to the WDT (watchdog Timer);
0 – Prescaler is assigned to the Timer0 module

PS0,PS1,PS2 – Prescaler Rate Select Bits
Inspection of these bits in table below shows that they allow a
choice of frequency divisions of incoming clock signal.

PS2 PS1 PS0 TMR0 WDT

0 0 0 1:2 1:1

0 0 1 1:4 1:2

0 1 0 1:8 1:4

0 1 1 1:16 1:8

1 0 0 1:32 1:16

1 0 1 1:64 1:32

1 1 0 1:128 1:64

1 1 1 1:256 1:128

INTEDG
Bit 7 Bit 6 Bit 5 Bit 0

Data memory bank 1 and 3
Bit 1Bit 2Bit 3Bit 4

R/W(1) R/W(1) R/W(1) R/W(1)R/W(1)R/W(1)R/W(1)R/W(1)
R/W Read/Writable bit; (1) After rest, bit is set;

3

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

TMR0: Counter Mode
 A push button is connected to the PA4 pin of PORTA as shown in the diagram below.
 Write an assembly language program to continuously count (use TMR0 to count

the pulses) the pressing and releasing of the button (one count) and continuously
display the counter value on the LEDs connected to PORTB.

 You may assume that the switch is debounced.

 To configure Timer0 we need to select its external input (i.e TOCS of Option
Reg must be 1)

 We will count at the rising edge (i.e TOSE of the Option Reg must be 0)
 We do not want the prescaler as we want to count the exact number of switch

presses. i.e PSA of the Option Reg = 1; Hence the values of PS2, PS1,
PS0 do not matter as we do not need WDT in this program.

 The final value of the Option Reg is B’00101000’
4

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

; Event Counting using Timer0

;Intialisation

start BANKSEL ANSEL ;select memory bank containing ANSEL Register
clrf ANSEL ;set PORTA to digital by clearing ANSEL Register
clrf ANSELH ;set PORTA B to digital by clearing ANSELH Register

;
BANKSEL TRISA ;select memory bank containing TRISA and TRISB Registers
movlw B’00010000’ ;PA4 =1
movwf TRISA ;make PORTA (PA4 as input)
clrf TRISB ;make PORTB all outputs
BANKSEL PORTB ;select memory bank containing PORTA and PORTB

;Registers
clrf PORTB ;reset PORTB (turn off all LEDS)
clrf TMR0 ;As we are in Bank 0, we may as well clear the contents of the

;Timer0
;

BANKSEL OPTION_REG ;select Option register to use TMR0
Movlw B’00101000’ ;setup TMR0 for external (+) edge (TOCS=1) input and no

;Prescaler
movwf OPTION_REG
BANKSEL PORTA ;select memory bank containing PORTA Register (bank 0)

;
;Main program starts here
Main movf TMR0,0 ; move the content of TMR0 to W register

movwf PORTB ;sent the content of W register to LEDS
goto main ;
END

00H Indirect
address
(INDF)

01H TMR0
02H PCL
03H STATUS
04H FSR
05H PORTA
06H PORTB
07H PORTC
20H:
7FH

(GPR)
96 Bytes

Bank 0

180H Indirect
address

181H Option_REG
182H PCL
183H STATUS
184H FSR
185H SRCON
186H TRISB
187H BAUDCTL
188H ANSEL
189H ANSELH
18AH PCLATH
190H ‐
1FFH

GPR
16 bytes

Bank 3

5

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

TMR0: Timer Mode
 Timer mode is selected by clearing the TOCS bit (OPTION register, bit 5 =0).

 In timer mode, the TMR0 register increments every instruction cycle. As an 8-bit
register, TMR0 can count from 00 to FF (255). When it reaches its maximum value,
FF, and is incremented further, it rolls over to 00.

 This register overflow is recorded by the T0IF (Timer0 Interrupt Flag) bit of the
INTCON (Interrupt Control) register by being set to 1.

 The T0IF bit set can trigger an interrupt (known as Timer0 Interrupt), if enabled.

 The Timer0 interrupt is enabled by setting the T0IE bit (Timer0 Interrupt Enable) of
the INTCON register along with the Global Interrupt Enable (GIE) bit.

 This interrupt would be the indication of the time out and will occur on the every
overflow of the TMR0 register.

 The TOIF bit must be cleared by the interrupt service routine so that the timer
interrupt can take place again.

GIE PEIE T0IE INTE RBIE T0IF INTF RBIF
Bit 7 Bit 6 Bit 5 Bit 0

INTCON Register
Bit 1Bit 2Bit 3Bit 4

R/W(0) R/W(0) R/W(0) R/W(x)R/W(0)R/W(0)R/W(0)R/W(0)

6

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

TMR0: Timer Mode
 If the clock frequency of PIC16f886 is 4 MHz clock, then the instruction clock will be 1 MHz (1

instruction cycle = 4 clock cycles, for PIC).

 The counter would then be clocked every 1 μs exactly.

 Therefore the Timer0 will take 256 μs to count from 00 to FF and then 00.

 By preloading the TMR0 register with a suitable value, a smaller timer interval (delay) could
be selected, with time out indicated by the timer interrupt.

 For example, if you preload the TMR0 register with the value 200, the Timer0 overflow would
occur after 56 μs. (256 μs – 200 μs)

 An eight bit programmable divider(prescaler) is also available and we can make use of this.

 The prescaler divides the input frequency by one of eight binary values between 2 and 256.
With 1 MHz instruction cycle, the maximum timer period would be 256 x 256 μs = 65.536 ms,
corresponding to the prescaler value of 256.

 The prescaler values are software selectable through PS0, PS1, and PS2 bits of the OPTION
register as explained in the previous slides

 In order to use the prescaler with the Timer0 module, the PSA bit of the OPTION register
must be cleared. If the PSA bit is set, no prescaler will be assigned to the Timer0 module.

	
/

	 ∗
	4	 ;			

0: 	 ; : 	1 256 7

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Generating 10 ms Delays usingTMR0
 For example, if you preload the TMR0 register with D’100’, the Timer0 overflow would occur after 156 μs.

(256 μs –156 μs) . The maximum timer period with a prescaler value of 64 would be 64 x 156 μs = 9.984
ms, + we need a delay of another 16 μs.

; The Timer0 interrupt is should not be enabled (i.e T0IE bit = 0 of the INTCON register) and the Global
Interrupt Enable (GIE) bit should disabled (GIE=0).

; initialisation
BANKSEL OPTION_REG ;select Option register to use TMR0
Movlw B’00000101’ ; setup TMR0 for internal input (TOCS =0)

; ;and Prescaler =64; PS2=1, PS1=0, PS0=1;
movwf OPTION_REG

;Main
call delay10ms

;delay sub_routine
delay10ms movlw D’100’

movwf TMR0 ;preload counter with D’100”
loop_ms btfss INTCON,2 ;test for if timer overflow has happened i.e T0IF = 1

goto loop_ms ; loop if not set i.e. wait
bcf INTCON,2 ;clear timer overflow flag i.e. T0IF = 0;
return

8

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Using TMR0 interrupts
 Write an interrupt service routine to increment the number in PORTB by 1, when TMR0 register overflows

and causes an interrupt. The maximum timer period would be 256 x 256 μs = 65.536 ms, corresponding
to the prescaler value of 256.

w_temp equ H’20’
status_temp equ H’21

org H’00’
goto start
org H’04’
goto TMR0_ISR ;go to Interrupt service routine

;Intialisation
start BANKSEL ANSEL ;select memory bank containing ANSEL Register

clrf ANSELH ;set PORTA B to digital by clearing ANSELH Register
BANKSEL TRISB ;select memory bank containing TRISB Register
clrf TRISB ;make PORTB all outputs

;
BANKSEL OPTION_REG ;select Option register to use TMR0
bcf OPTION_REG,5 ;TOCS=0; timer mode is selected
bcf OPTION_REG,3 ;Prescaler selected
bsf OPTION_REG,0 ;PS0=1 ; prescaler = 1:256
bsf OPTION_REG,1 ;PS1=1
bsf OPTION_REG,2 ;PS2=1

;
; BANKSEL INTCON ;select INTCON register to enable interrupt

bsf INTCON,5 ; T0IE=1 implies TMR0 overflow interrupt is enabled
bsf INTCON,7 ; Global interrupt enabled
BANKSEL PORTB ;select memory bank containing PORTB Register
clrf PORTB ;reset PORTB (turn off all LEDS)

;main program
wait_loop goto wait_loop

END

9

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Interrupt service routine
;Interrupt service routine (first save all registers)
TMR0_ISR movwf w_temp ;save current contents of w register in a temporary location ‘w_temp’

movf STATUS,W ;move the contents of the status register into W register
movwf status_temp ;save the contents of STATUS register in a temporary location ‘status_temp’

;
;
;
;main function

BANKSEL PORTB ;select the databank memory containing PORTB
incf PORTB ; increment the content of PORTB by 1
BANKSEL INTCON ;select the databank memory containing INTCON
bcf INTCON,2 ; clear interrupt flag bit T0IF

;
;
;Restore all registers

movf status_temp,W ;retrieve the STATUS register content saved in temporary location
movwf STATUS ; put it back in the STATUS register

;
;it is important that any further instructions , before returning from the service routine should not affect the STATUS register.
So we use swapf and movwf instructions as they do not affect the STSTUS register (see instruction set sheet)
;

swapf w_temp,1 ;the upper and lower nibbles are exchanged in w-temp and result placed in w-temp
swapf w_temp,0 ;the upper and lower nibbles are exchanged in w-temp and result placed in W reg.

;
bsf INTCON,7 ;Global interrupt enabled
retfie ;return from the interrupt service routine

;
END

11

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Watchdog Timer (WDT)
 One of the major functions of a watchdog timer is to automatically reset the

microcontroller in the event of a crash.

 The watch-dog timer built-in to the PIC16f886 runs with its own RC oscillator
(independent of external clock) and has a typical minimum time-out period of 18
milliseconds. There is a programmable prescaler (which divides the RC clock) that can
multiply this period by 128 (max) to give a total time-out period of 2.3 secs, which is good
for most applications.

 When the Watchdog Timer (WDT) is enabled, a counter starts at 00 and increments by 1
until it reaches FF. When it goes from FF to 00, the PIC micro will be reset.

 The only way we can stop the WDT from resetting the PIC is to periodically reset the
WDT back to 00 within the program.

 The instruction for clearing the WDT is ‘clrwdt’

 If the program does get stuck for some reason, the WDT will then reset the PIC, causing
our program to restart from the beginning.

12

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Watchdog Timer (WDT)
 Hopefully when the PIC restarts whatever condition led to the crash will have

gone away and the PIC will resume its normal operation.

 Note that the prescaler is not readable or writeable. When assigned to the
TMR0 module, all instructions writing to the TMR0 register will clear the
prescaler

 When the prescaler is assigned to WDT, a ‘clrwdt’ instruction will clear the
prescaler along with the WDT.

 When changing the prescaler from Timer0 to the WDT module or vice versa
care must be taken and a sequence of instructions must be executed (Ref:
microchip data sheet)

13

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Prof E Ambikairajah

Laboratory Activities

14

Activity 8: Intrusion Warning System

 Write an assembly language program for an intrusion warning system, that uses
interrupts on the PIC16F886 microcontroller to sound an 1000 Hz tone for 1
second, whenever a door sensor (SW1) connected to RB0 is closed (i.e., there
is an intrusion through the door) (see figure below).

 The 1 second time-out must be implemented using the TMR0 register overflow
interrupt. Also calculate the total amount of program memory space required for
the interrupt routine , in terms of bytes, occupied .

 Note that you are required to include a switch de-bouncing routine.

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Prof E Ambikairajah

ELEC2117: References
1. Designing Embedded Systems with PIC Microcontrollers – Tim Wilmshurst,

Elsevier, 2010

2. PIC Microcontrollers –Free online book – mikroElektronika ;
http://www.mikroe.com/products/view/11/book-pic-microcontrollers/

3. PIC 16F886 Data Sheet (2007), Microchip Technology; www.microchip.com

15

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

