
Chapter 5a: Interrupts

Professor Eliathamby Ambikairajah

Head of School of Electrical Engineering and
Telecommunications, UNSW, Sydney

27 March 2017 ELEC2117

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

PIC Interrupts

1

An interrupt is an event that forces the
microcontroller to execute the current instruction,
stops the main program execution and calls an
interrupt service routine.

On interrupt, the return address of the main
program is automatically pushed onto the stack
and program control is redirected to the interrupt
service routine via the interrupt vector address
0004H. The user must place the interrupt service
routine address at this location (0004H).

It is important to note that apart from the return
address (eg:021FH, see diagram below) no
registers (eg: W or STATUS registers) are saved
onto the stack. So it is important to save these
registers in the RAM, before servicing the
interrupt service routine.

A special instruction known as RETFIE is used
to return from an interrupt service routine to the
main program routine. Restore the W and
STATUS registers before the RETFIE instruction.

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

The 16f886 Interrupt structure
 The PIC16F886 has multiple interrupt sources:

– External interrupt (RB0/INT) – pin 21 - Timer0 interrupt
– Timer1 overflow interrupt - Timer 2 Match interrupt
– PortB change interrupts - 2 comparator interrupts
– A/D interrupt - EEPROM data write interrupt
– Fail-safe clock monitor interrupt - Enhanced CCP interrupt
– EUSART receive and transmit interrupts - MSSP interrupt
– Ultra low-power wake-up interrupt

 Each of the above has an individual Interrupt Flag bits and they are set
automatically when an interrupt is activated.

 The Interrupt Flags must be searched in your program to find out which
interrupt flag caused the interrupt.

 Once the interrupt has been serviced, the Interrupt Flag bit must be reset by
the software before returning from the interrupt service routine to the main
program.
 EUSART: Enhanced Universal Synchronous/Asynchronous Receiver/Transmitter

CCP: Capture, Compare, PWM; MSSP: Master Synchronous Serial Port
2

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Interrupt System Registers
 The Interrupt Control Register (INTCON) and Peripheral Interrupt Request

Register 1 (PIR1) record individual interrupt requests in flag bits
 The INTCON register also has individual and global interrupt enable bits
 The following interrupt flags are contained in the INTCON register:

 (a) INT pin interrupt (b) PORTB change interrupts (c) Timer0 overflow interrupt

GIE – Global Interrupt Enable bit
1 – Enables all unmasked interrupts;
0 – Disables all interrupts

PEIE – Peripheral interrupt enable bit (This is similar to GIE, but controls
interrupts enabled by peripherals;) 1 – Enables all unmasked peripheral
interrupts; 0 – Disables all peripheral interrupts

T0IE – TMR0 overflow interrupt enable bit
1 – Enables TMR0 interrupt; 0–Disables TMR0 interrupts

INTE– RB0/INT external interrupt enable bit
1 – Enables the RB0/INT external interrupt; 0 – Disables RB0/INT
external interrupt

RBIE– PortB change interrupt enable bit
(after configuring as input, PortB pins may cause interrupt
for high to low transition or vice versa) 1 – Enables the
PortB change interrupt; 0 – Disables the PortB
change interrupt

T0IF – TMR0 Overflow interrupt flag bit (This registers TMR0
register overflow) 1 – TMR0 register has overflowed and the bit must
be cleared in software; 0 – TMR0 register did not overflow

INTF– INT external interrupt flag bit (registers change of logic
state on the RB0/INT pin); 1 - The RB0/INT external interrupt and
must be cleared in software; 0 - The RB0/INT external interrupt did
not occur

RBIF– PortB change interrupt flag bit; 1 – At least
one of the PortB I/O pins changed state (must be cleared
in software); 0- None of the PortB I/O pins have changed
state

00H (INDF)

01H TMR0
03H STATUS
04H FSR
0BH INTCON
0CH PIR1
0DH PIR2
0EH TMR1L
20H GPR

 Bank 0

GIE PEIE T0IE INTE RBIE T0IF INTF RBIF
Bit 7 Bit 6 Bit 5 Bit 0

INTCON Register
Bit 1Bit 2Bit 3Bit 4

R/W(0) R/W(0) R/W(0) R/W(x)R/W(0)R/W(0)R/W(0)R/W(0)
R/W Read/Writable bit; (0) After rest, bit is cleared; (x) After reset, bit is unknown

3

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Peripheral Interrupt Request Registers
 The peripheral interrupt flags are contained in the PIR1 and PIR2 registers

(SFR-Data memory Bank 0).
 The corresponding interrupt enable bits are contained in PIE1 and PIE2

registers (SFR-Data memory Bank 1).

PIC16F886: Special Function Registers (SFRs) - Data memory bank 0
Address Name Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

0BH INTCON GIE PEIE T0IE INTE RBIE T0IF INTF RBIF
0CH PIR1 - ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF
0DH PIR2 OSFIF C2IF C1IF EEIF BCLIF ULPWUIF - CCP2IF

PIC16F886: Special Function Registers (SFRs) - Data memory bank 1
Address Name Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

8CH PIE1 - ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE
8DH PIE2 OSFIE C2IE C1IE EEIE BCLIE ULPWUIE - CCP2IE

The following interrupt flags are contained
in the PIR1 register:

 A/D interrupt
 EUSART receive and transmit interrupts
 Timer0 interrupt
 Timer1 overflow interrupt
 Timer 2 Match interrupt
 Enhanced CCP interrupt
 MSSP interrupt

The following interrupt flags are contained
in the PIR2 register:

 Fail-safe clock monitor interrupt
 2 comparator interrupts
 EEPROM data write interrupt
 Ultra low-power wake-up interrupt
 Enhanced CCP interrupt

4

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Option Register – Interrupt Edge Select Bit

 RB0/INT interrupt is affected by rising and falling edge (transition) on PORTB, bit 0.

 This transition can be configured from OPTION register INTEDG bit (bit 6)

 Setting INTEDG bit to 1 will activate interrupt on a rising edge

 Setting INTEDG bit to 0 will activate interrupt on a falling edge

INTEDG – Interrupt Edge Select bit
1 – Interrupt on rising edge of INT pin;
0 – Interrupt on falling edge of INT pin

RBPU INTEDG T0CS T0SE PSA PS2 PS1 PS0
Bit 7 Bit 6 Bit 5 Bit 0

OPTION Register – Data memory bank 1 and 3
Bit 1Bit 2Bit 3Bit 4

R/W(1) R/W(1) R/W(1) R/W(1)R/W(1)R/W(1)R/W(1)R/W(1)
R/W Read/Writable bit; (1) After rest, bit is set;

5

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Prof E Ambikairajah

Example: Hardware interrupt

6

 Write an assembly language program that counts the number of people passing through
a door.
 You can assume that only one person can go through the door at any given time.
 When the total number of people pass through the door reaches a value of 9 , the

warning LED is lit indicating the door is locked and the switch (SW1) used to detect the
people passing through the door is disabled (any further press will not be detected).
 The number of people going through the door must be displayed using a set of 4 LEDs

or using a 7-segment display.
 When the reset button (reset) is pressed, the counter is cleared and the switch (SW1)

is enabled.
 Note that the switch SW1 is connected to RB0 (PortB) as an interrupt.
 Note that you are not required to include any switch de-bouncing routine.

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

;Programming with single interrupt
w_temp equ H’20’
status_temp equ H’21’
counter equ H’22’
 org H’00’
 goto main
 org H’04’
 goto int_routine ;go to Interrupt service routine
;Initialisation
Main BANKSEL ANSEL ;select memory bank containing ANSEL register
 clrf ANSEL ;set PORTC to digital by clearing ANSEL register
 clrf ANSELH ;set PORTB to digital
 BANKSEL TRISC ;select memory bank containing TRISC register
 movlw B’10000000’
 movwf TRISC ;make PC0 to PC6 output and PC7 as input
 movlw B’00000001’
 movwf TRISB ;set PB0 as input ; PB1 to PB7 as output (not used here)
 BANKSEL PORTC ;select memory bank containing PORTC registers
 clrf PORTC ;turn off all LEDs
 clrf counter ;clear the counter

Programming with Single Interrupt

7

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

;Enable external interrupt
 BANKSEL OPTION_REG ; select Option register to configure rising or falling transition
 bcf OPTION_REG,6 ;select interrupt to trigger on falling edge (0-falling edge, 1-rising edge)
 BANKSEL INTCON ;Select memory bank containing INTCON register
 bsf INTCON,4 ;External interrupt (RB0) enable; i.e INTE = 1 to enable the external interrupt
 bcf INTCON,1 ;clear the flag bit (INTF=0); 0 - The RB0/INT external interrupt did not occur
 bsf INTCON,7 ;Global interrupt enable (GIE) is set to 1 for enabling the interrupts
;
wait_loop movf counter,w ;Move the content of counter to W register
 xorlw H’09’ ;check if the counter content is D’09’
 btfss STATUS,Z ;skip next instruction if z=1
 goto wait_loop
 clrf PORTC ; turn off all lights
 bsf PORTC,4 ; turn on the warning light
 bcf INTCON,4 ;disable interrupt (INTE =0)

reset_loop btfsc PORTC,7 ;test bit 7 to see if key pressed;
 ; branch if PC7 is 0 (pressed)
 goto reset_loop
 clrf counter
 bcf PORTC,4
 bsf INTCON,4 ; External interrupt (RB0) enable
 goto wait_loop

Enable External Interrupt

RBPU INTEDG T0CS T0SE PSA PS2 PS1 PS0
Bit 7 Bit 6 Bit 5 Bit 0

OPTION Register – Data memory bank 1 and 3
Bit 1Bit 2Bit 3Bit 4

R/W(1) R/W(1) R/W(1) R/W(1)R/W(1)R/W(1)R/W(1)R/W(1)
R/W Read/Writable bit; (1) After rest, bit is set;

8

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

;Interrupt service routine (first save all registers)
Int_routine movwf w_temp ;save current contents of w register in a temporary location ‘w_temp’
 movf STATUS,W ;move the contents of the status register into W register
 movwf status_temp ;save the contents of STATUS register in a temporary location ‘status_temp’

;main function
 incf counter,1 ; the counter is incremented when there is an interrupt.
 movlw counter,w ;Move the content of counter to W register
 andwf H’0F’ ;Most significant 4 bits are made zero
 movwf PORTC ;counter contents displayed

;Restore all registers
 movf status_temp,W ;retrieve the STATUS register content saved in temporary location
 movwf STATUS ; put it back in the STATUS register

;it is important that any further instructions , before returning from the service routine should not affect the STATUS
register. So we use swapf and movwf instructions as they do not affect the STATUS register (see instruction set sheet)

 swapf w_temp,1 ;the upper and lower nibbles are exchanged in w-temp and result placed in w-temp
 swapf w_temp,0 ;the upper and lower nibbles are exchanged in w-temp and result placed in W reg.

;Enable (reset the interrupt flag) the global interrupt before returning to the main program. If this is not carried out, the
microcontroller immediately cause another interrupt to occur when the it executes RETFIE instruction.
 bcf INTCON,1 ;clear the interrupt flag (INTF=0) (ready for the next interrupt)
 retfie ;return from the interrupt service routine
;
 END

Interrupt Service Routine

9

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Prof E Ambikairajah

Laboratory Activities

10

Activity 7: Lift control System

 The PIC16F886 microcontroller is used to control the operation of the lift in the Elec
Eng building. If a passenger in the lift presses the alarm switch, the LED on the control
panel flashes on and off at a frequency of 2Hz until the operator presses a reset switch
(see diagram below).

 Write an assembly language program for the lift control system, that uses an interrupt
service routine.

 The Interrupt Service Routine should protect the contents of the working register,
makes use of a 0.25 second time delay subroutine (you must write this routine) and
controls an LED attached to bit 0 of PORT A and monitors the reset switch attached to
PORTA bit 7.

 Explain why it is better to have the alarm switch cause an interrupt rather than the
main program to poll the alarm switch to see whether it has been pressed or not?

RB0

PIC 16f886

5VAlarm

RA0

RA7

5V

ResetProf
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Prof E Ambikairajah

ELEC2117: References
1. Designing Embedded Systems with PIC Microcontrollers – Tim Wilmshurst,

Elsevier, 2010

2. PIC Microcontrollers –Free online book – mikroElektronika ;
http://www.mikroe.com/products/view/11/book-pic-microcontrollers/

3. PIC 16F886 Data Sheet (2007), Microchip Technology; www.microchip.com

11

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

http://www.mikroe.com/products/view/11/book-pic-microcontrollers/

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12

