
Chapter 4: Timing - Delay Routines

Professor Eliathamby Ambikairajah

Head of School of Electrical Engineering and
Telecommunications, UNSW, Sydney

17 March 2017ELEC2117

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Delay Loops

1

Sometimes it may be necessary to implement a fixed delay
in a PIC assembly program and it can be done using a
short delay loop

PIC instructions are executed in one instruction cycle
(except for branching, which takes two instruction cycles).

One instruction cycle = 4/clock frequency = 4/4MHz = 1s
Time delays are generated using delay loops.

Normally a memory location is set up as a counter
and the counter is loaded with a number.
This number is decremented repeatedly in a loop until

the counter reaches zero.
The delay loop is normally written as a subroutine

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Delay Routine

2

 An example of a delay loop ‘TL ms’ is shown below:

counter1 EQU H’20’ ;Memory location H’20’ is used as a counter1

;First subroutine starts here

delay movlw D’255’ ;load w register with Decimal D1 = 255 i.e H’FF’
movwf counter1 ;moving D’255’ into the memory location H’20’

delayms nop ;1 instruction cycle
nop ;1 instruction cycle
decfsz counter1,1 ;1 instruction cycle (when not branching)
goto delayms ;2 instruction cycles
nop ;1 instruction cycle
return ;2 instruction cycles

When the counter1 is
zero, next line (goto)
is skipped and
”nop” is executed.

Delay (TL)= [1+1+(D1 -1)(1+1+1+2) +1+1+1+2+2] cycles = [4+ 5D1] *1s

D1= 255 provides a delay of 1.279 ms
D1 =200 provides a delay of 1.004 msProf

es
so

r E
. A

mbik
air

aja
h

UNSW
 S

yd
ne

y

Group Exercise: Delay routines

3

 Find the number of instruction cycles taken for the delay routine below:
; assume that the counter content is ‘k’
delay decfsz counter ;1 instruction cycle (when not branching)

goto delay ; 2 instruction cycles

 Find the number of instruction cycles taken for the delay routine below:
;Delay Routine
delayms movlw D’250’ ; 1 instruction cycle

movwf counter1 ; 1 instruction cycle (counter1 is memory location H’20’)
loop_ms nop ; 1 instruction cycle

decfsz counter1,1 ;1 instruction cycle (when not branching)
goto loop_ms ; 2 instruction cycles
return ;2 instruction cycles

 Find the number of instruction cycles taken for the delay routine below:
;Delay Routine
delay movlw D’153’ ;1cycle

movwf counter1 ;1 cycle
delay1: decfsz counter,1 ;if zero skip the next instruction

goto delay1 ;not zero goto delay1
delay2: decfsz counter,1 ;1 cycle when not branching

goto delay2 ;2 cycles
delay3: decfsz counter,1 ;1 cycle when not branching

goto delay2 ;2 cycles
return ;2 cycles

Answer: 1998 instruction cycles

Answer: 2 + 3 (k-1) instruction cycles

Answer: ? instruction cycles

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Nested Delay Loops

4

 The delay loop program shown in the previous slide (slide 2) provides only a short delay
 There are many occasions where we need a longer delay.
 One way to obtain this, is by using a nested delay loop where a second delay

subroutine calls the first delay loop within its loop. See the example below:

counter equ H’21’ ;Memory location H’21’ is used as a counter

;Second subroutine starts here
delay movlw D’100’ ;load w register with Decimal 100

movwf counter ;Load the counter with k = 100
dloop2 call delay_ms ;delay =1.004 ms (=1004 cycles) 2 instruction cycle

decfsz counter,1 ;1 instruction cycle (when not branching)
goto dloop2 ;2 instruction cycles
return ;2 instruction cycles

 A longer delay can be also obtained by using a loop within a loop principle within a
single subroutine

Delay (TL)= [1+1+(k -1)(1004+2+1+2) +1004+2+2+2] cycles = [3+ 1009 k] *1s

k= 100 provides a delay of 100.9 ms

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Group Exercise: Nested Delay routines

5

 Determine the number of instruction cycles taken for the delay routine below:
;Delay Routine

Answer: ? instruction cycles

delay movlw D’120’
movwf counter1 ;counter1 is memory location H’20’)

;
delay_Psec: movlw D’250’

movwf counter2 ;(counter2 is memory location H’21’)
;
delay_Nms: movlw D’250’

movwf counter3 ;(counter3 is memory location H’22’)
;
delay_Mms: nop

decfsz counter3,1
goto delay_Mms

;
decfsz counter2,1
goto delay_Nms

;
decfsz counter,1
goto delay_Psec

;
returnProf

es
so

r E
. A

mbik
air

aja
h

UNSW
 S

yd
ne

y

Example: LED chaser
 Eight LEDS are connected to Port A as shown in the diagram. Write

down a program to turn on/off one LED after another, moving from left
to right (i.e. LED walks) and repeat the sequence. Use a delay loop of
250 ms in your program.

ORG H’00’
goto init

;Intialisation routine starts here

init BANKSEL ANSEL
clrw
movwf ANSEL

;
movwf ANSELH
bcf STATUS,6
bsf STATUS,5 ;select memory bank 1

clrf TRISA ;set port A as output (TRISA = H’00’)

bcf STATUS,5 ;select memory bank 0 (or BANKSEL POARTA)
clrf PORTA ;all LEDs are turned off

;

6

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Example: LED chaser ……

;Main program starts here
;
start movlw H’80’ ; load register W with H’80’

movwf PORTA ;LED connected to the MSB will be on
;
shift_right bcf STATUS,0 ;carry bit =0;make sure carry is cleared (zero)

call delay ;call the delay routine of 250ms
;

rrf PORTA,1 ;rotate right contents of PORTA through carry
btfss PORTA,0 ;test if we have reached PA0
goto shift_right ;
goto start

;
END ;end of program

Write a delay subroutine of
approx: 250 ms

7

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Eliminating Switch Bounce
 All mechanical switches have a bouncing property where the switch contacts open and

close when a switch is pushed. The switch contacts normally bounce for about 10 – 15
ms before staying together(see diagram below). This is also true when the switch
opens.

 The microcontroller may register many of theses contact bounces instead of registering
one push. Therefore, a software solution is to:

 Note the first detection of change in switch position
 Wait for about 10 -15 ms (a delay loop)
 Check the switch again to see if it is still pressed

 Hardware techniques based on latches and Schmitt triggers are also available.

Exercise: Draw a switch
debouncing circuit using latches

8

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Example: Switch de-bouncing using a delay loop
 This program lights the LED if the switch is pressed and switch de-bouncing is

included
;
;
;
;
;Configure microcontroller

list p=16f886
#include <pic16f886inc>

;Configuration data for microcontroller
……. ……
……. ……
ORG H’00’ ;force program to start at reset vector
goto start ;Go to the beginning of the initialisation program

;
;Intialisation
start BANKSEL ANSEL ; select Bank 3

clrf ANSEL
BANKSEL TRISA ;select memory bank 1
movlw B’11001100’
movwf TRISA ;program port A according

;to the above bit pattern
BANKSEL PORTA;

00H Indirect
address

03H STATUS
04H FSR
05H PORTA
06H PORTB
07H PORTC
20H
:

7FH

(GPR)
96 Bytes

Bank 0

80H Indirect
address

83H STATUS
84H FSR
85H TRISA
86H TRISB
87H TRISC
A0H‐
EFH

(GPR)
80 Bytes

F0H
‐

FFH

Accesses
70H ‐7FH

Bank 1

9

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Example: Switch de-bouncing using a delay loop

;Main program starts here
bcf PORTA,5 ;clear PA5 in port A, i.e LED off

wait4keyp btfsc PORTA,7 ;Test bit 7 to see if key pressed ; branch if PA7= 0(pressed)
goto wait4keyp ; keep checking the key
call delay15ms ; call a delay routine of 15 ms
btfss PORTA,7 ;see if key still pressed; branch if PA7= 1(not pressed)
bsf PORTA,5 ;light the LED (set PA5=1). i.e. button is pressed.

;
wait4keyr btfss PORTA,7 ;Test bit 7 to see if key pressed ; branch if PA7= 1(not pressed)

goto wait4keyr ; keep checking the key to be released
call delay15ms ; call a delay routine of 15 ms
btfsc PORTA,7 ; branch if PA7= 0(pressed)
bcf PORTA,5 ;turnoff the LED (set PA5=1). i.e. button is released
goto wait4keyp ;keep reading the status of switch
END ;end of program

10

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Keyboard Scanning

11

 A keyboard allows numeric or alphanumeric
information to be entered and is widely used
in photocopiers, central heating controllers
etc

 A keyboard consists of touch-activated
switches arranged in a matrix fashion (Rows
and columns) as shown in the diagram

 When a key is pressed, it connects its row to
its column

 The “Row-Scanning” technique is utilised in
order to identify the pressed key

 Send a “walking-zero” pattern on the output
lines (rows) and read the input lines
(columns) and look for a zeroProf

es
so

r E
. A

mbik
air

aja
h

UNSW
 S

yd
ne

y

Example :Keyboard Scanning program

12

 This program scans a 4x4 matrix keyboard connected to PORT A and when a key is
pressed, the value of the key is coded and displayed by LEDS connected to PORT C.

;Configuration data for microcontroller
store equ H’20’
count equ H’21’ ……. ……

ORG H’00’ ;force program to start at reset vector
goto start ;Go to the beginning of the initialisation program

;Intialisation
start BANKSEL ANSEL ;select memory bank containing ANSEL Register

clrf ANSEL ;set PORTA to digital by clearing
BANKSEL TRISA ;select memory bank containing TRISA Register
movlw B’00001111’
movwf TRISA ;PA0-PA3 input and PA4-PA7 output
clrf TRISC ;make PORTC all outputs
BANKSEL PORTC ;select memory bank containing PORTA and PORTC Registers
clrf PORTC ;reset PORTC (turn off all LEDS)

;

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Example :Keyboard Scanning program

13

;Main program starts here
keyscan bsf STATUS,0 ;carry bit =1

movlw B’01111111’; first row pattern PA7=0
movwf store ;store row pattern (location H’20’)
movlw D’04’
movwf count ;counter =4 (location H’21’)

rowscan movlw store,0 ;move the content of store (row pattern) to W register
movwf PORTA ;row energising
movf PORTA,0 ;move PORTA contents to W register
nop ;one cycle for PORTA contents to appear on pins
xorwf store,0 ;XOR operation to check key pressed
btfsc STATUS,2 ;if the result is zero no key pressed
call led_display ; if key pressed find the key
rrf store,1 ;create next row pattern (result is put back in store location)
decfsz count,1 ; check all 4 rows have been energised and if so start from row 1 again.
goto rowscan ;
goto keyscan ;start again and keep scanning

You must write the led_display
subroutine for this program to work

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Indirect Addressing of Data memory

14

 Indirect addressing is useful when creating a list of data that
needs to be stored in data memory or, for example, clear
RAM location 20H to 7FH

 Indirect addressing of data memory is possible by using the
INDF register (See Table).

 An instruction using INDF register actually accesses the 8-bit
data in the File Select Register (FSR) (See Table)and this
data is used as the address for accessing the data memory.
This is called the “Indirect Address”. The difference between
direct and indirect addressing is illustrated below:

00H Indirect
address
(INDF)

01H TMR0
02H PCL
03H STATUS
04H FSR
05H PORTA
06H PORTB
07H PORTC

:

20H
:
:

7FH

General
Purpose
Registers
(GPR)

96 Bytes
Bank 0

‐ Data Memory

Direct and indirect addressing

An effective 9-bit address is obtained by
concatenating the 8-bit FSR and the IRP
bit of the STATUS register

bsf STATUS,7 ;IRP=1

From OP codeRP1 RP0
01

06

Direct Addressing
IRP FSR Register 07

Indirect Addressing

Bank 0 Bank 3Bank 2Bank 1

00H

7FH

180H

1FFH
Data Memory

RP1 RP0
0 0

RP1 RP0
0 1

RP1 RP0
1 0

RP1 RP0
1 1

9-bit Address
7-bit address

9 bits7 bits
Bank 2

ContentContent

100H

17FH

80H

FFHProf
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Example : Indirect addressing

15

00H Indirect
address
(INDF)

01H TMR0
02H PCL
03H STATUS
04H FSR
05H PORTA

:

20H
:
:

2FH
30H
:
Bank 0

‐ Data Memory

bcf STATUS,7 ;IRP=0

movlw H’20’

movwf FSR ; FSR register (Pointer)contains the address H’20’

movlw D’01’ ; load W register with 1

;Any instruction using the INDF register actually access the register pointed to by the
;File Select Register (FSR).
loop movwf INDF ;Move W content to memory location pointed by FSR

addlw 1 ;increment the content of W register

incf FSR,1 ;increment the pointer

btfss FSR,4 ;when FSR = B’0010 1111’

goto loop ;if bit 4 of FSR = 0 next instruction is executed

itself goto itself

END

Exercise: Write a program to clear the memory locations from H’20’ to H’7F’ using
indirect addressing

 This program stores the values D’01’ to D’15’ in memory locations H’20’ to H’2F’

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Prof E Ambikairajah

Laboratory Activities

16

Activity 5: Increment and decrement with two push buttons

 Write an assembly language program to increment (by pressing and releasing
the increment button) or decrement (by pressing and releasing the decrement
button) the number displayed on the seven segment display.

 This number must be between zero and nine.
 The switches are connected to PA0 and PA1 and the 7-segment display is

connected to PORT C (PC0 to PC7).
 The display must be initialised to show zero before executing the main program
 The switch debounce should be included in your program.
 Your program should include a Binary to BCD conversion table/routine

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Prof E Ambikairajah

Laboratory Activities

17

Activity 6: Door Open or close Detector

 The switch connected to PC0 (PORT C) represents the closed or open condition
of a door as shown in the diagram.

 The switch in a closed position is equivalent to the door being closed.
 Write an assembly program which continuously polls PC0 to detect if the door is

open.
 When the door remains open, an LED connected to PC1 should flash at 0.5sec

intervals continuously.
 You must write the delay routine for 0.5 sec assuming a clock frequency of

4MHz.

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

Prof E Ambikairajah

ELEC2117: References
1. Designing Embedded Systems with PIC Microcontrollers – Tim Wilmshurst,

Elsevier, 2010

2. PIC Microcontrollers –Free online book – mikroElektronika ;
http://www.mikroe.com/products/view/11/book-pic-microcontrollers/

3. PIC 16F886 Data Sheet (2007), Microchip Technology; www.microchip.com

18

Prof
es

so
r E

. A
mbik

air
aja

h

UNSW
 S

yd
ne

y

