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Chapter 3: Discrete-Time Systems 

3.1 Introduction 
A discrete-time system is a device or algorithm that operates on 
a discrete-time signal called the input or excitation according to 
some well defined rule, to produce another discrete-time signal 
called the output or response.  

We say that the input signal x[n] is transformed by the system 
into a signal y[n], and express the general relationship between 
x[n] and y[n] as  

[ ] [ ]{ }nxHny =  (3.1) 

 
where the symbol H denotes the transformation or processing 
performed by the system on x[n] to produce y[n] (see Figure 
3.1). 

 
 

3.2 Block Diagram Representation 

In order to introduce a block diagram representation of discrete-
time systems, we need to define some basic blocks that can be 
interconnected to form complex systems. 
 

Figure 3.1: Block diagram representation of a discrete-time system 
 

H 
x[n] y[n] 

H x[n] y[n] 
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3.2.1 An adder 
A system that performs the addition of two signal sequences to 
form another sequence, which we denote as y[n]. 

Note: It is not necessary to store either one of the sequences in 
order to perform the addition. In other words, the addition 
operation is memoryless. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2.2 A constant multiplier  
This operation simply represents applying a scale factor on the 
input x[n]. Note that this operation is also memoryless.  

 
 
 

a 
multiplier 

x[n] y[n] = ax[n] 

Figure 3.3: Block diagram representation of a multiplier. x[n] and y[n] denote 
discrete-time input and output signals respectively. ‘a’ denotes a scalar multiplier. 

Figure 3.2: Block diagram representation of an adder, x1[n] and x2[n] denote 
discrete-time input signals and y[n] denote a discrete-time output signals. 

       ∴y[n] = {2,    9,    0} 

n=0  n=1  n=2 

   y[0]      y[2] 

x2[n] = {-2,  4,  3} 

n=0      n=2 

x1[n] 

+ 
x2[n] 

y[n] = x1[n]+x2[n] 

      x1[n] = {4,  5,  -3} 

x1[0]   x1[2] sequence 

at n=0  n=2 
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Example: 
 
 
 
 
 
 
 

 
3.2.3 A Unit Delay Element 
The unit delay is a special system that simply delays the signal 
passing through it by one sample. 

If the input signal is x[n], the output is x[n-1]. In fact, the sample 
x[n-1] is stored in memory at time n-1 and it is recalled from 
memory at time n to form y[n] = x[n-1]. 

Thus this basic building block requires memory. We use the 
symbol T or z-1 to denote the unit of delay.  

 
 
 
 
 
Example: 
 
 
 
 
 
  

x[n] = {2, -5, 6, 8}; a = 0.1; y[n] ={0.2, -0.5, 0.6, 0.8} 

sequence 

   n=0   n=3                              n=0    n=3 

x[n] = {0,  1,  0,  5,  7,  -2,  -1,  0} 

 y[n] =    {0,  1,  0,  5,  7  ,  -2,  -1} 
 

   n= -1;  n=0;   n=1 

y[0]  y[1]  y[2]  …   y[6] 

z-1 
x[n] y[n] = x[n-1] 

unit delay 

Figure 3.4: Block diagram representation of a unit delay.T denotes the 
sampling period. 

T 
x[n] y[n] = x[n-1] 
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Note: Normally a combination of adders, multipliers and unit 
delays form a complex discrete-time system. 

3.3 Difference Equations 
A discrete-time system consisting of combinations of adders, 
multipliers and unit delays can always be described by a set of 
difference equations. The equations would be ordinary algebraic 
equations if no delays were present.  

Examples:  
 
(a) 

 
 
(b)  
 
 

 
 
 
 
 

y[n] = x[n-2] 

]2[
4
1]1[

4
1][

2
1][ −+−+= nxnxnxny

T 
x[n] x[n-1] 

- Unit sample delay 

T 
y[n] = x[n-2] 

T 
sampling period 

T 
x[n] x[n-1] 

T 
x[n-2] 

+ 
y[n] 

0.5 0.25 0.25 

0.5 x[n] 

{ y[n] = x[n-1]; y[0]=x[0-1]=x[-1]; y[1] = x[1-1]=x[0];…} 
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(c) [ ] [ ] [ ]125.0 −+= nynxny   

 
 
Exercise: 
Draw a system implementation for the difference equation as 
given below: 
   𝑦𝑦[𝑛𝑛] = 𝑥𝑥[𝑛𝑛] + 𝑥𝑥[𝑛𝑛 − 1] + 𝑥𝑥[𝑛𝑛 − 2] + 𝑥𝑥[𝑛𝑛 − 3]   
 
 

Example       [ ] [ ] [ ] ]1[1 110 −−−+= nybnxanxany  

Draw a system implementation for the above difference 
equation. 

 

 
 
 
 
 
 
 
 
We can write the above difference equation as a set of two 
equations 

[ ] [ ] [ ]110 −+= nxanxanv      - system 1 
[ ] [ ] [ ]11 −−= nybnvny  - system 2 

+ 
y[n] 

T 
y[n-1] 0.25 

x[n] 

     

+ 
y[n] 

T 

-b1 

x[n] 
+ 

T 

a1 

v[n] 
a0 

Feedback Part Feedforward Part 

Figure 3.5: Direct Form I structure 

System 1 System 2 
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+ 
y[n] 

T 

-b1 

x[n] 
+ 

T 

a1 

p[n] a0 

Part Feedforward Part Feedback 

Figure 3.8: Direct Form II structure 

System 2 System 1 

p[n-1] p[n-1] 

+ 
y[n] 

-b1 

x[n] 
+ 

T 

a1 

p[n] a0 

p[n-1] 
Figure 3.8: Canonic form. 

 

 
 
 
 
 
Without changing the input-output relationship, we can reverse 
the ordering of the two systems in the cascade representation. 

 
  

System 1 System 2 
v[n] x[n] y[n] 

System 2 System 1 
p[n] x[n] y[n] 

Cascade 
structure 

Figure 3.6: Two systems forming a cascade structure can be interchanged 
without affecting the final output signal. 
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There is no need for two delay operations; they can be combined 
into a single delay as shown in Figure 3.8. Since delay 
operations are implemented with memory in a computer, the 
implementation of Figure 3.8 would require less memory 
compared to the implementation of Figure 3.8.  

It can be proven that both block diagrams Figure 3.5 and Figure 
3.8/Figure 3.8 represent the same difference equation. 

Proof: 

[ ] [ ] [ ] [ ]11 110 −−−+= nybnxanxany   

From Figure 3.8: 

[ ] [ ] [ ]11 −−= npbnxnp      

[ ] [ ] [ ]110 −+= npanpany     

Substituting n → n-1 in equation (3.2.b), 

[ ] [ ] [ ]211 10 −+−=− npanpany    

Multiplying equation (3.2.c) by b1, 

[ ] [ ] [ ]211 11101 −+−=− npbanpbanyb    

Adding equation (3.2.b) and (3.2.d), 

[ ] [ ] [ ] [ ]
[ ]

[ ] [ ]
[ ]

    
1

1111001

10

2111
−

−+−+−+=−+
nxanxa

npbanpanpbanpanybny

Therefore,  

[ ] [ ] [ ] [ ]11 110 −−−+= nybnxanxany  

as in equation (3.2) 

 

(3.2) 

(3.2.a) 

(3.2.b) 

(3.2.c) 

(3.2.d) 
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Exercise:   

For the given systems shown below, write the difference 
equation. 

a) 

T

T

x[n] y[n]

 

Ans: y[n]=a0x[n]+ a2x[n-2]+ b1y[n-1] 

b) 

+
x[n] y[n]

T

T

-b1

-b2

 
Ans: y[n]=x[n]- b1y[n-1]- b2y[n-2] 

c) Draw a canonic structure for the difference equation 
given  below: 

  𝑦𝑦[𝑛𝑛] = 𝑥𝑥[𝑛𝑛] − 𝑎𝑎2𝑥𝑥[𝑛𝑛 − 2] + 𝑏𝑏1𝑦𝑦[𝑛𝑛 − 1] − 𝑏𝑏2𝑦𝑦[𝑛𝑛 − 2]  
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3.4 Classification of Discrete-Time Systems 
In the analysis as well as in the design of systems, it is desirable 
to classify the systems according to the general properties that 
they satisfy. For a system to possess a given property, the 
property must hold for every possible input signal to the system. 
If a property holds for some input signals but for others, the 
system does not possess the property. 

General Categories are: 
• Static systems 
• Time - invariant systems 
• Linear systems 
• Causal systems 
• Stable systems 

 
3.4.1 Static systems 

A discrete-time system is called static or memoryless if its 
output at any instant ‘n’ depends at most on the input sample at 
the same time, but not on past or future samples of the input. 

Example: 
[ ] [ ]
[ ] [ ] [ ]nbxnnxny

naxny
3+=

=
 

Both are static or memoryless. 

On the other hand, the systems described by the following input-
output relations, such as 

[ ] [ ] [ ]

[ ] [ ]∑
=

−=

−+=
N

k
knxny

nxnxny

0

13

 

are dynamic systems or system with memory. 
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Exercise: 
 
Examine the time-invariant properties of the following systems: 

a) y[n]= nx(n) 
b) y[n]=|x[n] | 

 
 

Ans: a) Time variant  b) Time invariant 

3.4.2 Time-invariant systems 
A time-invariant system is defined as follows: 

[ ] [ ]00 nnynnx H −→−  

where y[n] = H{x[n]}. 

Specifically, a system is time invariant if a time shift in the input 
signal results in an identical time shift in the output signal. 

Example: Determine if the system is time variant or time 
invariant. 

[ ] [ ]{ } [ ]nnxnxHny ==  (3.3) 

The response of this system to x[n-k] is  

[ ] [ ]knnxnw −=  

 
Now if we delay y[n] in (3.3) by k units in time, we obtain 

[ ] ( ) [ ]
[ ] [ ]knkxknnx

knxknkny
−−−=

−−=−
 

This system is time variant, since 

[ ] [ ]nwkny ≠−  
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3.4.3 Linear Systems 
A linear system is defined as follows: 

[ ] [ ] [ ] [ ]nyanyanxanxa H
22112211 +→+  (3.4) 

where a1 and a2 are arbitrary constants. 
 

Example: Three sample averager 

[ ] [ ] [ ] [ ]{ } [ ]{ }

[ ] [ ]

[ ] [ ] [ ] [ ]
[ ] [ ]
[ ] [ ]

[ ] [ ]][                             
}11

11{
3
1}{

11
3
1

21

21

21

2121

nbynay
nbxnax

nbxnax

nbxnaxnbxnaxH

nynx

nxHnxnxnxny

H

+=
−+−+

++

+++=+

→

=−+++=

 

 

The 3-sample averager is a linear system. 
 
Example: 

[ ] [ ]{ } [ ]
[ ] [ ]{ } [ ] [ ]{ }

[ ] [ ] [ ] [ ]nxnabxnxbnxa
nbxnaxnbxnaxH

nxnxHny

21
2
2

22
1

2

2
2121

2

2++=

+=+

==

 

 
which is not equal to [ ] [ ]nbxnax 2

2
2
1 + . This system is nonlinear. 

Example: 

[ ] [ ] [ ]{ }
[ ] [ ]{ } [ ] [ ]

[ ] [ ]nbynay
nbnxnanxnbxnaxH

nxHnnxny

21

2121

+=
+=+

==

 

The system is linear. 
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3.4.4 Causal systems 
A system is said to be causal if the output of the system at any 
time ‘n’ depends only on present and past inputs, but does not 
depend on future inputs. If a system does not satisfy this 
definition, it is called noncausal.  Such a system has an output 
that depends not only on present and past inputs but also on 
future inputs. 

Example: 

[ ] [ ] [ ]
[ ] [ ]
[ ] [ ] [ ]
[ ] [ ] Noncausal

Noncausal43
Causal
Causal1

→−=
→++=
→=
→−−=

nxny
nxnxny

naxny
nxnxny

  

 
{Let n = -1 ⇒ y[-1]= x [1], the output at n = -1 depends on the 
input at n = 1.} 

Discrete - time sequence is called causal if it has zero values for 
n<0. 

 
 
 
 
 
 
 
 
 
 
 

3.4.5 Stable Systems 

• A discrete signal x[n] is bounded if there exists a finite M such 
that |x[n]| < M for all n.  

y[n] 

n 

Causal 
& Stable   

Figure 3.9: An example of causal discrete-time sequence. 
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Ans: a) Static, nonlinear, time invariant, casual, stable 
                  b)  Dynamic, linear, time varying, noncasual, unstable
  

• A discrete-time system in Bounded Input-Bounded Output 
(BIBO) stable if every bounded input sequence x[n] produced 
a bounded output sequence. 

 

[ ] [ ] BnyAnx ≤≤ maxmax then,If  
Example:  

The discrete-time system 

  [ ] [ ] [ ] 0,1 >+−= nnxnnyny  
 
is at rest [i.e. y[-1]=0]. Check if the system is BIBO stable. 

If x[n]=u[n], then |x[n]| ≤  1. But for this bounded input, the 
output is 

[ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]



521222
210111

1000

=+=→=
=+=→=

==→=

xyyn
xyyn

xyn

 

which is unbounded. Hence the system is unstable. 

y[0]=1   y[1]=2   y[2]=5   increasing 

Exercise: A discrete-time system can be (1) Static or Dynamic, 
(2) Linear or nonlinear, (3) Time invariant or time varying, (4) 
Causal or noncausal, (5) Stable or unstable 

Examine the following system with respect to the properties 
above.  

(a)              

(b)    

][][ nxaeny =

]1[][][ ++= nnxnxny
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3.5 Linear Time-Invariant Discrete (LTD) Systems 
3.5.1 Transformation of Discrete-Time signals 
A discrete-time signal, x[n] may be shifted in time (delayed or 
advanced) by replacing the variables n with n-k where k > 0 is 
an integer  

  x[n-k]  => x[n] is delayed by k samples 
  x[n+k] => x[n] is advanced by k samples 
 

For example consider a shifted version of the unit impulse 
function (see Figure 3.10). If we multiply an arbitrary signal 
x[n] by this function, we obtain a signal that is zero everywhere, 
except at n = k. 

[ ] [ ] [ ] [ ] [ ]knkxknnxny −⋅=−⋅=∴ δδ  (3.5) 
 
 
 
 
 
 
 
 
 
 
 
  

 
 

 
 
 

  

δ[n-k] 

1 

0    1   2  k-1 k k+1      
n 

y[n] 

1 

0    1   2  k-1k k+1      
n 

Figure 3.10: Multiplying a discrete-time signal, x[n], with a shifted unit impulse 
function, δ[n-k], produces a discrete-time signal whose sample is zero except at n=k. 

0    1     2  k-1 k  k+1      

1 

x[n] 

n 
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An arbitrary sequence can then be expressed as a sum of scaled 
and delayed unit impulses. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
More generally, the discrete-time sequence can be expressed 
according to  

[ ] [ ] [ ]∑
∞

−∞=

−=
k

knkxnx δ
 

(3.6) 

 
For real time signals 

[ ] [ ] [ ]∑
∞

=

−=
0k

knkxnx δ
 

and for a real-time signal with a finite number of samples N. 

[ ] [ ] [ ]∑
−

=

−=
1

0

N

k
knkxnx δ

 
(3.7) 

Figure 3.11: An example of expressing arbitrary discrete-time sequences 
as a sum of scaled and delayed unit impulses. 

 -3    -2    -1   0     1    2    3    4    5     6    7           n 

1 

p[n] 

a3 a1 

a4 

a2 a7 

p[n] = a-3δ[n+3] + a1δ[n-1] + a2δ[n-2] + a4δ[n-4]+ a7δ[n-7] 
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If x[n] has finite duration, the infinite sum in equation (3.7) may 
be replaced by a finite sum. That is if x[n] ≠ 0 for –N2 ≤ n ≤ N1. 

[ ] [ ] [ ]∑
−=

−=
1

2

N

Nk
knkxnx δ  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Equation (3.7) is a special form of convolution. Generally, the 
convolution of two sequences x[n] and y[n] is defined as 

 
                                                                                                                                                            
           
           
           
   
 
 

Note that, convolution is commutative : 

i.e. x[n] * y[n] = y[n] * x[n] 

 

n 0 

x[n] 

N2 N1 

Figure 3.12: An example of finite duration discrete-time sequences. 

(3.8) 
[ ] [ ] [ ] [ ]

[ ] [ ]∑

∑
∞

−∞=

∞

−∞=

−=

−=

k

k

kyknxnconvolutio

knykxnynx *
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3.5.2 The impulse Response of a LTI system 
For example consider the discrete-time system, H, shown in 
Figure 3.13. 
 

 
 
 
 
 
 
 
 
 
 
 
Difference equation for the system H: 

[ ] [ ] [ ] [ ]nynbxnaxnv +−+= 1   

[ ] [ ]1−= ncvny  (3.9) 

 
From the above difference equations, y[n] can be determined for 
a given input. 

Let x[n] = δ[n]                 Unit impulse 

Assume v[n] = 0 for n ≤0 ⇒ y[n] is also initially zero for n ≤ 0. 
Substituting n = 0,1,2,... in equation (3.9), we obtain 

 
n = 0    v[0]=ax[0]+bx[-1]+y[0]=a⋅1+b⋅0+0=a 
  ⇒ y[1] = a⋅c 
 
n = 1    v[1] = ax[1] + bx[0] + y[1] = a⋅0 + b⋅1+ a⋅c=  b+ac 

⇒ y[2] = cv[1] = c(b+ac) 

x[n] 

+ 

T 

a 

b 

T 

System H 

y[n] 
+ 

v[n] c 

Figure 3.13: An example of discrete-time system, whose input and output are 
represented by x[n] and y[n], respectively. 
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n = 2  v[2] = ax[2] + bx[1] + y[2] = 0 + 0 + c(b+ac) 
  ⇒ y[3] = cv[2] = c2(b+ac) 
... 
n = n – 1 v[n-1] = bcn-2 + acn-1 

 ∴ y[n] = c v[n-1] = bcn-1 + acn   
  

[ ] [ ] [ ] [ ] ( ) ( )121 −+−==∴ −
=

nuacnubcnhny nn
nnx δ

 
     

Impulse response 

The response [ ] [ ]nhny
∆

=  to an impulse excitation (x[n] = δ[n]) is 
known as the impulse response and it is a very important 
characteristic of a discrete system. 

 
 
 
 
If x[n] = δ[n], then y[n] = h[n]. The output tells us the system 
behaviour as the system is being hit by all input frequencies. 
h[n] completely characterizes the system.The response to an 
arbitrary input signal x[n] is the convolution of x[n] with the 
impulse response of the system. 

 
 
 
 
 
 
 
 

[ ] [ ] [ ]nhnxny *=  (3.10) 

H x[n] y[n] 

H x[n] y[n] 

System H: 

impulse response of the system 
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[ ] [ ] [ ] [ ] [ ]knhkxnhnxny
k

−== ∑
∞

−∞=

*   

[ ] [ ] [ ] [ ] [ ]knxkhnxnhny
k

−== ∑
∞

−∞=

*  (3.11) 

 
where h[n]=H{δ[n]}. 

3.5.3 Finite Impulse Response (FIR) System 
If the impulse response of a LTI system is of finite duration, the 
system is said to be Finite Impulse Response (FIR). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
x[n] = δ[n] y[n] = 2x[n] - 0.5x[n-1] 
 
n = 0   y[0] = h[0] = 2x[0] – 0.5x[-1] = 2 
n = 1   y[1] = h[1] = 2x[1] – 0.5x[0]  = -0.5 
n = 2   y[2] = h[2] = 2x[2] – 0.5x[1]  = 0 
 
 
n = n            0 

x[n] = δ[n] 

n 

2 

 Impulse Response 

x[n] = δ[n] 

0    1    2          n 
Input 

Non-recursive system 

x[n] 

y[n] 

Figure 3.14: An example of LTI systems with finite impulse response. 

+ 

T 

2 

-1/2 
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3.5.4 Infinite Impulse response (IIR) system 
If the impulse response of a linear time-invariant system is of 
infinite duration, the system is said to be an Infinite Impulse 
Response (IIR) system. 

 
 
 
 
 
 
 
 
 
 

 

[ ] [ ] [ ]
[ ] [ ]1.1 −=

+=
nvny

nynxnv
 

If x[n] = δ[n], calculate h[n] for n=0,1,2,... 

 

Example: 

Find the impulse response h[n] of the following first-order 
recursive system. 

[ ] [ ] [ ]


 ≥+−

=
otherwise0

01 nnxnay
ny  

To find h[n], we let x[n] = δ[n] and apply the zero initial 
condition. 

x[n] = δ[n] 

0    1   2      n 
Input 

T 

recursive system 
x[n] y[n] 

+ 
v[n] 1 

Figure 3.15: An example of discrete systems with infinite impulse response. 
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n = 0, y[0] = h[0] = ay[-1] + δ[0] = 1 

n = 1, y[1] = h[1] = ay[0] + δ[1] = a 

n = 2, y[2] = h[2] = ay[1] + δ[2]  = a2 

 
n = n, y[n] = h[n] = an    for n ≥ 0 

y[n] = h[n] = 0 for n < 0, because δ[n] is zero for n < 0 and     
y[-1]= 0. 

Hence, h[n]=anu[n]  for all n 

 

 

 

 

 

 

 
          y[n] = x[n] * h[n]  

 

Example: 

Find the impulse response h[n] of the following fourth order 
non-recursive system. 

[ ] [ ] [ ] [ ] [ ] [ ]4321 43210 −+−+−+−+= nxanxanxanxanany
 

h[n] 
0 < a < 1 

1 

0 n 

h[n] 

a > 1 

1 

0 n 

h[n]=anu[n] 
y[n] x[n] y[n] x[n] 

T 

+ 

a 

≡ 
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To find h[n], we let x[n] = δ[n]. 

n=0  h[0] = a0δ[0] + a1δ[-1] + a2δ[-2] + a3δ[-3] + a4δ[-4] = a0   

n=1  h[1] = a0δ[1] +  a1δ[0] + a2δ[-1] + a3δ[-2] + a4δ[-3] = a1 

n=2  h[2] = a0δ[2] +  a1δ[1] +  a2δ[0] + a3δ[-1] + a4δ[-2] = a2 

n=3  h[3] = a0δ[3] +  a1δ[2] +  a2δ[1] +  a3δ[0] + a4δ[-1] = a3 

n=4  h[4] = 0 + 0 + 0 + 0 + a4δ[0] = a4 

n=5  h[5] = 0 + 0 + 0 + 0 + a4δ[1] = 0 

For n ≥ 5, h[n] = 0, since the nonzero value of δ[n] has moved 
out of the memory of this system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0, a1, a2, a3 and a4 are called coefficients  (+ or -) or constants. 

  

h[n] 

a0 a1 
a2 

a3 

a4 

δ[n] T T T T 

 
+ 

x[n] 

y[n]=h[n] 

a0              a1              a2               a3                 a4 
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Example: Two structures are shown below: 
(a) Write the difference equation 
(b) Calculate the impulse response 

 
 

 
 
Structure 1:   y[n] = x[n] + x[n-1] + x[n-2] 
h[n]=y[n]|x[n] =δ[n] 
h[n] = δ[n] + δ[n-1] + δ[n-2] 
h[0]=1; h[1] = 1; h[2] = 1  and  h[n] = 0    n ≥ 3 

Structure 2:    y[n] = x[n]-x[n-2] 
h[n] = δ[n] - δ[n-2]  
h[0]=1; h[1] = 0; h[2] = -1 and  h[n] = 0     n ≥ 3 

Exercise: 

A difference equation for a particular filter is given by 
 
y(n) = 0.12 x(n) – 0.1 x(n-2) + 0.82 x(n-3) – 0.1 x(n-4) + 0.12 x(n-6) 
 
Find the impulse response of the above filter 

Ans: h[n]=[0.12 0 -0.1 0.82 -0.1 0 0.12] 
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3.5.5 Convolution  

[ ] [ ] [ ] [ ] [ ]knhkxnhnxny
k

−== ∑
∞

−∞=

*  

[ ] [ ] [ ] [ ] [ ]knxkhnxnhny
k

−== ∑
∞

−∞=

*  
 
Commutative Law:  

[ ] [ ] [ ] [ ]nxnhnhnx ** =  

Associative Law:  

[ ] [ ]( ) [ ] [ ] [ ] [ ]( )nhnhnxnhnhnx 2121 **** =  

 
 
 
 
 
 
 
 

Distributive Law:  

[ ] [ ] [ ]( ) [ ] [ ] [ ] [ ]nhnxnhnxnhnhnx 2121 *** +=+  

 
 

 
 
 
 
 

y[n] 
 

x[n] 
 

x[n] 
 h2[n] 

 
h1[n] 
 

≡ 

x[n] 

h1[n] 
 

h2[n] 
 

y[n] 
 + h[n]= h1[n]+ h2[n] 

y[n] 
 

x[n] 
 

≡ 

≡ 
y[n] x[n] 

 
h1[n] 

 
h2[n] 
 

y[n] 
 

x[n] 
 h[n]= h1[n]*h2[n]  

y[n] 
 h1[n] 

 
h2[n] 
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Convolution of Finite Sequence  
The convolution of two finite-length sequences is also of finite 
length. 

Find the convolution of h[n] = [2, 5, 0, 4] and x[n] = [4, 1, 3]; 
i.e., y[n] = x[n] * h[n].  Assume that both sequences start at n=0.  
The flipped sequence is h[-i] = [4, 0, 5, 2].  Line up flipped 
sequence below x[n] to begin overlap and shift it successively, 
summing the product sequence to obtain the discrete 
convolution  

0 shift 

 

1 shift 

 

2 shifts 

 

3 shifts 

 

4 shifts 

 

5 shifts 

 

]1243111228[][][][ =∗=∴ nhnxny  

Note: Length of y[n] = Length of x[n] + Length of h[n] - 1 
                   6              =              3           +         4              - 1 

Exercise: 
Compute the convolution y[n] = x1[n] * x2[n] of the digital 
signals given by 
  

x[n]:              4    1    3 
    4    0    5   2            ← h[-i] 
y[0] = Sum of products = 8 

x[n]:              4    1    3 
          4    0   5    2            ← h[1-i] 
y[1] = (5x4)+(2x1) = 22 

x[n]:              4    1    3 
                4    0    5    2      ← h[2-i] 
y[2] = 0 + 5 + 6 = 11 

x[n]:              4    1    3 
                      4    0    5   2 ← h[3-i] 
y[3] = 16 + 0 + 15 = 31 

x[n]:         4    1    3 
                      4   0   5   2  ← h[4-i] 
y[4] = 4 + 0 = 4 

x[n]:    4    1    3 
                        4   0   5   2 ← h[5-i] 
y[5] = 12 

[ ] [ ]

[ ]


 ≤≤

=

−=

elsewhere,0
50for,1

1,2,1

2

1

n
nx

nx
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3.6 Stability of Linear Time-Invariant Systems 
An LTD system is stable if, and only if, the stability factor 
denoted by S, and defined by  

[ ] ∞<= ∑
∞

−∞=k
khS ||  (3.12) 

is finite.  

Let x[n] be a bounded input sequence {i.e. | x[n]|<M for all n, 
where M is a finite number}. We must show that the output is 
bounded when S is finite. To this end, we work again with the 
convolution formula. 

[ ] [ ] [ ]∑
∞

−∞=

−=
k

knxkhny  

If we take the absolute value of both sides of the above equation, 
we obtain 

[ ] [ ] [ ]∑
∞

−∞=

−=
k

knxkhny ||  

Now, the absolute value of the sum of terms is always less than 
or equal to the sum of the absolute values of the terms 

[ ] [ ] [ ] |||||| ∑
∞

−∞=

−≤
k

knxkhny  

Since the input values are bounded, say by M, we have for all n:   

[ ] [ ]∑
∞

−∞=

≤≤
k

MSkhMny ||||
 

 

Hence, since both M and S are finite, the output is also bounded. 
ie,  a LTD system is stable if its impulse response is absolutely 
summable. 
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Example: Check the stability of the first-order recursive system 
shown below: 

[ ] [ ] [ ]nxnayny +−= 1  

The impulse response of this system is: 

[ ] [ ]nuanh n=   for all formula 

[ ]∑ ∑
∞

−∞=

∞

−∞=

==
k k

nanhS ||||  

It is obvious that S is unbounded for |a| ≥ 1, since then each term 
in the series is ≥ 1. 

For |a| < 1, we can apply the infinite geometric sum formula, to 
find  

||1
1

a
S

−
=  for |a| < 1 

Since S is finite for |a| < 1, the system is stable. 

 

Exercise: 

For the discrete time system given below, check if it is a linear 
time-invariant and BIBO stable. Assume y(-1) = 0. 

𝑦𝑦(𝑛𝑛) = 𝑛𝑛𝑛𝑛(𝑛𝑛 − 1) + 𝑥𝑥(𝑛𝑛)         𝑛𝑛 ≥ 0 
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CHAPTER 3: PROBLEM SHEET 3 

 
Q1) Draw the block diagrams of the following system in both Direct form I and Direct Form II. 

 

[ ] [ ] [ ]
[ ] [ ] [ ]142

715.0
−−=
+−−=

nwnwny
nxnwnw  

 

(Note: x[n] is the input and y[n] is the output) 
 
 
Q2) Consider the cascade of the following two systems as depicted below:   

       
 
 
 
 
  
  
The difference equation relating x[n] of y[n] is: 
 

[ ] [ ] [ ] [ ]21 8
1

4
3 −−−+= nynynxny  

 

Determine α and β.     Ans: α=1/4 and β=1 
 
 
Q3) For the block diagram realisations given below, develop the relation between y[n] and x[n] 

in each case. 

 
Ans: a) y(n)-ay(n-1)=bx(n)+cx(n-1);  b) y(n)=αx(n)+βx(n-1)+βx(n-2)+αx(n-3)  

 

Q4) Draw a system implementation for each of the following difference equations: 
 
a) [ ] [ ] [ ] [ ] [ ]533412 −+=−−−+ nxnxnynyny  

 
b) [ ] [ ] [ ]Nnxnxny −−=    

 
c) [ ] [ ] [ ] [ ] [ ] [ ]2121 21210 −−−−−+−+= nybnybnxanxanxany   
 

Q5) A difference equation for a particular filter is given by  
 

[ ] [ ] [ ] [ ] [ ] [ ]66.041.038.021.01.0 −+−+−+−−= nxnxnxnxnxny  

System 1 
p[n]=0.5p[n-1]+x[n] 

System 2 
y[n]=αy[n-1]+β p[n] 

 

p[n] x[n] y[n] 
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Find the impulse response of the above filter. 
 

Ans: h[n]={0.1, 0, -0.1,  0.8, 0.1, 0, 0.6, 0, 0, 0...} 
 
Q6) Show that the convolution of the two infinite duration sequences 

 
[ ] [ ] [ ] [ ]nubnqnuanp nn == and  

 
for all n, where u[n] is the unit step function and a ≠ b, is given by 
 

[ ]
ba
bany

nn

−
−

=
++ 11

  
 

  
Q7)  Consider the system described by the difference equation 

 
[ ] [ ] [ ]nbxnayny +−= 1   

Determine ‘b’ in terms of ‘a’ so that [ ]∑
∞

−∞=

=
n

nh 1        Ans:b=1-a 

 
Q8) For each of the following systems, determine whether or not the system is (i) linear and (ii) 

time-invariant 
 
a) ( )][cos][ nxny =     Ans: Non-linear; Time invariant 

b) [ ] [ ] ( )nnxny π2.0cos.=     Ans: Linear; Time variant 

c) [ ] [ ] [ ]1-nxnxny −=     Ans: Linear; Time invariant 

d) ][][ nxny =      Ans: Non-linear; Time invariant  

e) [ ] [ ] [ ]1++= nnxnxny     Ans: linear; Time variant 

f) [ ] [ ]∑
+

−∞=

=
1n

k
kxny      Ans: Linear; Time invariant 

g) Show that y[n] = x[-n] is not a time-invariant system. 
 
 
Q9)  

a) Let x[n] = {1  4  0  2} and h[n] = {1  2  1}.  Find their convolution (Both sequences 
start at n=0).  

Ans:{1, 6, 9, 6, 4, 2}  
 

b) Let x[n] = {0.5  0.5  0.5} and h[n] = {3  2  1}.  Find their convolution (Both 
sequences start at n=0).  

Ans:{1.5, 2.5, 3, 1.5, 0.5}  
 

 
 End of Chapter 3  
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